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We consider the extended Hubbard model for the single cubic lattice
and rewrite it in the form of interacting dimers, using the exact solution
of the dimer problem. We analytically derive the second quantization form
of the dimer Hamiltonian eliminating from the considerations unoccupied
dimer energy levels in the large U limit (it is the only assumption). The
resulting dimer Hamiltonian written with the use of the Hubbard operators
and spin operators contains three terms, visualizing explicitly competing
magnetic interactions (ferromagnetic, antiferromagnetic) as a generalization
of the t—J model. The presented, nonperturbative method, can in principle
be applied to the cluster of any size (e.g. one central atom and z its nearest
neighbours). The use of the projection technique can further be applied in
the case of a crystal to obtain the second quantization form of the extended
Hubbard model for the sc lattice in the large U limit.

PACS numbers: 71.10.—w, 71.10.Ca, 71.10.Fd

1. Introduction

The theoretical description of the electronic properties of solids always starts
with an appropriate treatment of the electromagnetic interactions between charged
particles (electrons + ions). Having in mind electronic subsystem we constantly
deal with the Hubbard model itself, Ref. [1], or its extensions (many-band mod-
els, ete.), presented in a large number of monographs and review articles (see e.g.
Refs. [2-13] and very large number of original papers cited therein). The impor-
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tance of this approach and its place in the solid state theory lies in the fact that it
1s conceptually simplest and thus is a standard doorway to the correlated electron
systems. It 18 commonly believed that the Hubbard model and its extensions can
widely be used to explain many of the physical phenomena in quite different areas
of the solid state physics: magnetic and transport properties of transition met-
als, their compounds and alloys, including insulator-to-metal transitions (cf. e.g.
Refs. [1-13] and papers cited therein), high-temperature superconductors (nega-
tive U models, cf. e.g. Ref. [14]), fluctuating valence systems and heavy fermions
(Anderson-like models, Ref. [15], cf. also e.g. Refs. [11, 16]), liquid helium *He
(cf. e.g. Refs. [17-19)]), fullerenes (cf. e.g. Refs. [20-22]). Tt does not mean at all
that the Hubbard model and its extensions are easy to handle and their relative
mathematical simplicity is only an illusion. This fact is very well known in the
literature. The situation is exceptionally difficult in the case of large U (Coulomb
repulsion). To demonstrate a high degree of complexity of the extended Hubbard
model (a variety of different competing interactions within the model) we consider
one-band electronic system described by the Hamiltonian

H="% tijef,cio+UY nigni

i#.0 i
1 1 1 2
+3 ; T4 im0 + 3 ; P niomj o (1)
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The indices (i, j) enumerate the lattice points, ¢;; is the hopping integral, U
denotes the intrasite Coulomb repulsion, J() and J(2) (generally, not necessary
equal) describe the effective intersite Coulomb interactions, resulting from the
original intersite Coulomb repulsion modified by polaronic effects (see e.g. Ref. [14]
for details). The operators ¢; , (c;{'a) are the electronic annihilation (creation)
operators in the lattice site ¢ with spin ¢ (=1, |) and n; , = C;Ijgci,a~ We restrict
ourselves to the sc lattice and we apply tight binding approximation: #; ;1 = —t,
J[(;]"]z) = JO2) (U > max{|JW| |JP)|}) where i and j are nearest neighbours.
Using these assumptions we can rewrite the Hamiltonian (1) in an equivalent form
dividing the original sc lattice into a set of interacting dimers (see Fig. 1).

We obtaln
D
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where

D
HP ==t (cfy per20 + o pcr10) + Unryingyg + nr2mra,)
o

+J(1)an,1,an1,2,a +J(2)Zn1,1,0n1,2,—0~ (3)

The indices (I, .J) enumerate the dimers and HP is the extended Hubbard model
(1) of the I-th dimer. The second, fourth, and sixth term in (2) describe the hop-
ping and effective Coulomb interactions between nearest dimers in the z-direction
whereas the third, fifth, and seventh term represent the hopping and effective
Coulomb interactions between nearest dimers ((y, z)-plane) and between different
dimer planes (cf. Fig. 1).T Starting from the exact solution of the dimer Hamilto-
nian (3) we can apply exactly the same procedure as for the Hubbard model itself,
Ref. [23], leading to the final form of the dimer extended Hubbard Hamiltonian in
the large U limit (present paper). This approach is straightforward but very labo-
rious. It differs significantly from the other approaches used in the literature as e.g.
perturbation expansion or canonical transformation (cf. e.g. Refs. [24—32]) and ab
initio derivations, Refs. [33—36], following the original approach from Refs. [37, 38]
(see also Refs. [39, 11] and [12] for a review). The application of the method pre-
sented in this paper to the crystal as a whole, described by the Hamiltonian (2) is
given in the next paper (see Ref. [40]).
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Fig. 1. A plane of the Hubbard dimers. The crystal is considered as a collection of

parallel lying dimer planes.

tThe correctness of the decomposition of the original Hamiltonian (1) into a set of interacting
dimers (2) can easily be verified using the usual Fourier transformation in the case of (1) and
ik

. . . 1 ‘R .
the dimer Fourier transformation c; 1(2) s = Vo Zk Ck,o€ 1)1(2)c171(2)70 in the case of (2)

where N is the number of lattice points. In both cases we obtain the same form of transformed
Hamiltonian in the tight binding approximation.
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2. Exact solution of the extended Hubbard model for a dimer

The eigenvalue problem for the dimer Hamiltonian (3) can easily be found
(we drop the dimer index T) using the standard procedure (cf. Refs. [41-43, 23]).
Let us start with the vectors |nq 1,71 ;00 1,n2) (nie =0,1; i =1,2; 0 =1, ])
forming the Fock basis of the dimer space of the states

0) =10,050,0), [21) = [1,1;0,0), [31) =10,1;1,1),
122) = [1,0;1,0), [32) = |1,0;1,1),
11) = [1,0;0,0), [23) =[1,0;0,1), [33) = [1,1;0,1),
112) = 10,1;0,0), [24) = [0,1;1,0), [34) = [1,1;1,0),
13) = 10,0;1,0), [25) = [0,1;0,1),
114) = 10,0;0,1), [26) = [0,0;1,1), [4) =]1,1;1,1). (4)

The first index in |a) corresponds to n = Zi,a nio (= 0,1,2,3,4), the second
one (if necessary) enumerates the vectors corresponding to given n. It is very
convenient to find first annihilation (creation) operators in the representation of
the Fock space (4) when operating on this space. We find

c1,1 = Op11 + O12.21 + 013,22 + O14,23 + O26 32 + O25 33

+0324 34 + O31 4, (5)
c1,] = Opj12 — O11,21 + 013,24 + O14,25 + O26 31 — O23 33

—022,34 — O32.4, (6)
c21 = 0013 — 01122 — O1224 + O1426 — O25 31 — O23 32

+021 34 + O33 4, (7)
2, = Ogj1a — O11,23 — O12,25 — O13,26 + 024,31 + O22.32

+0321 33 — O34,4, (8)

where

Oa,p = |a)(B]. (9)
Inserting (5)—(8) into (3) we obtain the dimer Hamiltonian in the Fock space
representation

HP = —t(O011,13 — O21,24 + 02326 — O33 31 + O13,11 — O24,21 + O26,23 — 031,33
+012,14 + 021,23 — 02426 — O34,32 + O14,12 — O23 21 — O26 24 — O32,34)
+U (021,21 + O26,26) + J(l)(ozz,zz + O25,95) + J(Z)(023,23 + O24,24)
+HU 4+ JD + T (031 31 + O32,32 + O33,33 + O34,34)
+2(U + JV 4+ JENOy 4. (10)
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The operation with HP given by (10) on the Fock basis (4) and using simple
algebraic calculations we can easily find the eigenvalues Fy, and eigenvectors | E,)
of the dimer. This, in turn, allows to express the dimer Hamiltonian (3) (or (10))
in the form

=" Eu|E){Eal, (11)
where
Ey =0, |Eo) = 0),
By = —t, [E11) = 5 (111) + [13)),
Eys=t, |E12) = 2 (111) = [13)),
Eys = —t, |E13) = 75 (112) + [14)),
By =t, |E1a) = F5(112) — [14)),
b= J®), |E21) = 75(123) + [24)),
By =T, |E22) = 75(121) — 126)),
23 = C + U2 | Bag) = a1(|21) + [26)) — as(|23) — [24)),
Boy = —C + U2 | Eaa) = ax(|21) 4 [26)) + a1(123) — [24)),
25 = J ), | Eas) = [22),
Bog = JO), |Eas) = |25),
Exn=t4+U+JW 4+ |Ey) = 2=(131) + [33)),
By = —t4+U+JW+ @), |Eg) = 2-(131) — [33)),
Fag=t+ U+ JO 4+ J&) |Es3) = \/Lg(|32>+|34>),
Esa=—t+U+JM 472, |Ea) = J=(132) — [34)),
By =2(U + JW 4 72y, |Ea) = |4) (12)
and
‘- ¢ (L2 b (13)
m=g\/1+ U;ic{(” (14)

1 U—J@

The next important step in our calculations is the possibility to express the
annihilation operators (5)—(8) as linear combinations of the transition operators
between dimer states. This procedure can easily be performed when using the
reciprocal relations to (12) and inserting them into (5)—(8). We obtain
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1
=(Pi13,21 + P1392)

(Po11+ Po2) + 2(

Pio 25+

o= L Lp L
1,T—\/§ 7 11,25 7

1 1 1
+—=(bP13,23 + aPi324) — §(P14,21 — Pi499) + —=(aPia 23 — bPi4 24)

V2 V2

1 1
—|—§(P21,33 — Po134) — = (P2 3z + Poosa) + 7(0P23,33 + bP23 34)
\/_

1
+ 2(P11 21 — P11 29)

1
—(aP1223 — bP19 24)

V2

1
—=(aPa3 31 + bPa3 32)

V2

1 1
_ﬁ(bPZAL,Sl — aPay30) — 7(P25,33 — Pa534) — EPBBA - EPMA’
1 1 1

1
e21 = —=(Po11 — Po12) — \/§P11 25 — \/§P12,25 - §(P13,21 + P13 22)

1 1
- —(P14 91 — Pia22) — —=(aP14 23— bPi4 24)

V2
1
(aP23 33 — P23 34)

V2
1 1 1
_ﬁ(bPZAL,SS + aPos3a) — E(P% 31 + Pag,32) + EP31,4 - EPBZA’ (18)

N | —

1 1
_ﬁ(bPZAL,SS — aPos34) + —=(Pas 31 — Pas32) +
1

1
c1] = —=(Poi3+ Poj1a) + EP13,26 - \/§P14 26

1
—=P31 4+ —=P324, (16)
/2

-3

1
(bP11 234 aPi1,24) — =(Pr221 + Pi2,22) —

S\H
T
[N

—=(Pr1,31 — Po1,32) — =(Pan31 + Pasyzn) +

l\DI»—k
R N

! (17)

[\)

(bP13 23+ aPi3 24

S\H
T

l\DI»—k

4)
1

—=(P21,33+ Po1,34) + §(P22 33— Pag3a) +
1

1 1 1
EP13,26 - EPM,% - §(P11,21 — P11.99)

1
- (an 93+ aPi1 24) — —(Plz 21 4+ Pi2,22) + —=(aP12 23 — bP12 24)

V2

1
—=(aPa3 31 — bPa3 32)

V2

1 1 1
_ﬁ(bPZAL,Sl + aPos32) + —2(P25,33 + Pos5 34) — EPBBA + EPM,A}, (19)

(Po13— Po1a) —

Sl

€2l =

N

—_

+=(Po131 4 Por,32) + =(Ponz1 — Panan) +

[\]

1
2
1

where
Po,p = |Ea)(Ep| (20)
and
a=a+as, b=a —as. (21)
In this way we have expressed the annihilations operators cy(2) , in the dimer

representation. This, in turn, allows to derive later the extended Hubbard model
for a dimer in the large U limit using the projection technique.
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3. Large U limit for a dimer

Looking at the eigenvalues of the extended Hubbard model for a dimer (12)
we can see that in the large U limit (U > ¢, U > max{|J(D| [J()|} the energies
E, = Fog, Es3, B3y, E3s, Fs3, Fsq and E4 take on large, positive values, much
larger than the other, producing in the partition function the terms which can
practically be neglected. It means that the mentioned energies cannot be occupied
by electrons in a reasonable temperature range (1 eV = 11604.5 K) and therefore
can be excluded from our considerations. The dimer Hamiltonian (11) in the large
U limit can thus be reduced to the following expression:

HP = —t(P1111 — Progo+ Piais— Praga) + J 3 Pog o

U+ J3
+ (—C + — Poy 9q + JO(Pas o5 + Pag 26). (22)

The Hamiltonian (22) can easily be written in the compact second quantization
form. Let us first introduce the Hubbard operators

tio=Cio(l=ni_0), bio=cioni—o (23)
and spin operators
1 1
S = g5y —niy) = 5(niy —nfy),
Sf = C;'I,—Tci,l = a;'l,—Tai,la S = C;I,—lci,T = ajy’lam, (24)

where nf , = af _a;, (i=1,2,0 =1,]). To demonstrate how to rewrite (22) in the
second quantization form let us consider the first term in (22). Applying (20) and
(12) we can rewrite this term in the equivalent form

—t(Pi111— Pizio+ Pis13— Pia1a)

= —t(011,13+ O13,11 + O12,14 + O1412). (25)
According to (9) and (4) we get

01113 =11,0;0,0)(0,0;1,0]| = ciT(l —ny,Dea(l—ng)) = afTasz’
Oiz,11 = G;Tam,
O12,14 = 0,1;0,0)(0,0;0,1| = Cfl(l —nyp)es | (L—nog) = aflalla

014,12 = a;laLy (26)

Thus, the first term in (22) can be written in the second quantization form to be

—t(Pi111— Pio1o+ Pis13 — Pia1a) = —1 Z(afgaz,a + a;001,0)~ (27)
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Exactly the same procedure can be applied to other terms in (22). It gives the
result (we introduce here (23) and (24)):

— nfng
HP = —t;[afaazya + a;Ualya] +2JM (Sf <S55+ 14 2)

2 Z Z n(llng dat 2 (1+R)2

o ning xt 1-R (2)
X[Sl S2- ]+(1—x<2>)23[1+R+$

x[2(bfTafla27lb27T + b;Ta;—,lal,lbl,T) + (1= nf)ns + (1 = ng)nf — ninf]

t 14 23 2) N .
+2(1 — l‘(z)) |: R +x -1 agzza:(aa,aba,a + ba,aaa,a), (28)
where
(2)
= % o) = JT (29)
16x2
=y ey (30)
a(b a(b
”1523 =2 ”1523,0 (”Ii@) = b9 ,b12),0 = ”1<2>,a”1<2>,—a) (30a)

and @ = 1 (2) if @ = 2 (1). The Hamiltonian (28) is exactly equivalent to (22).
We see that the first three terms in (28) represent the exact form of the dimer
Hamiltonian (3) in the limit U — oo. Besides, the dimer Hamiltonian (28) contains
three competing magnetic (ferromagnetic and antiferromagnetic) interactions of
the Ising- and Heisenberg-type. The complicated form of the Hamiltonian (28) can
essentially be reduced when applying the linear Taylor expansion of the coefficients
with respect to z and #(?) (x, #(*) < 1). We obtain

_ . . nana
P = _tza: [aiaazya + a;aalya] + 2‘](1) (Sl SZ + 14 2)

a,,a 2 a,,a
—9J() (5;55 - "14"2) + % [51 -8, — "14"2] . (31)

We can see that for J(1) = J(2) = 0 the Hamiltonian (31) reduces to the well-known
t—J model (cf. Ref. [37]) in the case of the Hubbard dimer.
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4. Projection technique

Exactly the same result (28) can be received by applying a more general ap-
proach. Let us first note that after the elimination of the unoccupied dimer energy
levels the subspace of the dimer eigenvectors (12) in the large U limit contains the
following eigenvectors: |Eo), |F11), |Fi2), |Fis), |Fi4), |Fa1), |Ea4), |Eas) and
| E56). Thus, the projection operator onto this subspace has the form

P=PFyo+ Piiji1+ Pioia+ Pisis+ Piaia
+Po1,91 + Poana 4 Pos o5 + Pag 26 (32)

The second quantization form of this operator can be obtained in exactly
the same way as the formula (27). Each of the transition operators P, g in (32)
can be written as a linear combination of the operators Ou g (see (9)) by using
(12) which, in turn, can directly be rewritten in the second quantization, similar
0 (27). In this way we get

1 1 1 1 1, .
P:l—i(n1+n2)+4nbng+§(1—5) [4(51»5'2—1711712)

+2 (biTailaZleT + b;Ta;lalylblyT) + (1 —n{) ”g + (1 —n3) ”Ii - ”Ii”g]
e 2, 2 (o abms + b o), (33)
=1,2 ¢

where z, x(z), and R are given by (29) and (30), respectively. With the use of the

projection operator P the dimer Hamiltonian H can actually be written in the
form

H® = PHPP. (34)

Applying the explicit form of the dimer Hamiltonian (3) and the formula (34) we
can write

HP = =1 (e} ,e10 + 7 ,00) + U(AL 701y +7F 7))

g

+ION a7 e + I 0t e, (35)

where (i =1,2; o =1,])
Cio=CioP =Pci P ¢, =Pcf, = (ci,P)t =Pcf,P

Ni,oc = ning, ﬁ;{_a = Pniyo'. (36)
The most simple form of these operators with the use of (23), (24) and (33) reads

Gy =g+ 0 [Siany + Sy an] =8 [STany + ST ax,], (37)
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ay =g, — B [ar - SFary] +8[STaz) - SFazy], (38)
and
a b a a b
= (1 - 6”2—2 - %) 57+ 6”2—155 +3(S:8; +5F57) + ”2—1 (1 - %)
1 b a ng 77,(1177,% + 4+

+43 ol 1—n§— 5 77 + b7 pai jaz, bay

+6 (afsz,T + a;lblyl + biTaZT + bilall) , (39)
_ ng  nb\ . né ., e e n{ n}
= - (1— 72—72) ST =B %5 + 0 (575 + Sy SE) + 5 (1— 7)

Ly o« _ N5\ _ ning
+6 [5”1 (1 T T o) T Ty + bfTaflaZle,T

+8 (af o,y + adybug + b jang + b7 s ) (40)
81(9)5 = Q1(2),0 T4 (b1(2),a + aj—(z)y_gaZ(l),—abZ(l),a)

+ "i(2)
F0 | bo1) 0 F a5y, 01(2),—0b1(2),0 + a20)0 7 (41a)

_ 1— é a _ 1 b
ay(2),0 = 41(2),0 5 2(1) T 521 |

a 1
bl(Z),a = b1(2),g (1 - 77«2(1) - 571%(1)) s (41b)

1 1 x
ﬁzi(“ﬁ)’ "= AR (42)

where z, z(*)] and R are defined by (29) and (30). The expressions for @ , and
Ta,» (0 =T, ]) can easily be found by changing 1 < 2in (37), (38) and (39), (40). It
is clear that inserting (37)—(40) into (35) we obtain exactly the same expression for
the dimer Hamiltonian in the large U limit (28) when performing straightforward
but very laborious algebraic calculations.

5. Conclusion

Starting from the exact spectrum of the extended Hubbard model for a dimer
(the smallest complex of interacting atoms) and rejecting from the considerations
unoccupied energy levels we were able to derive the second quantization form of
the dimer Hamiltonian in the large U limit (Sec. 3). This derivation was straight-
forward without applying perturbation expansion or canonical transformation. In
principle, the presented method can be applicable to any size of a finite complex
of interacting atoms as e.g. to a cluster with one central atom and z its nearest
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neighbours and to any other models with one model parameter (or more) substan-
tially greater than the other. The only complication which here arises is the fact
that the mathematical complexity of the problem grows exponentially up with the
size of the cluster (see e.g. Refs. [44-47]). In Sec. 4 we have shown that exactly the
same result (28) can be obtained with the use of the projection technique. This
method applied to the dimer is nothing else as “redefining” the primary construc-
tion operators in (3) and replacing all of them by (37)-(40) in the large U limit.
In the next paper [40] we will show that the method is also applicable to the case
of a crystal when one divides the Hamiltonian of the original lattice into a set
of interacting dimers (2) and uses a modified projection procedure, introduced in
Sec. 4.
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