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Applications of the electro—optical Kerr effect in physical-chemical anal-
ysis of binary mixtures are reviewed. Improvementsin the experimental tech-
niques, in particular, development of the pulsed and alternating electric field
based approaches, have led to significant advances in this area. However,
problems associated with the description of the internal field of liquids re-
main and hamper broader applications of the techniques. It is shown that a
further progress in the electro—optical Kerr effect characterization of chem-
ical systems relies on the development of a more general theory of optical
properties of condensed phase chemical mixtures that can account for non-
linear effects, such as hyperpolarizability, dispersion and specific conditions
of the Kerr constant measurements.

PACS numbers: 31.70.Dk, 78.20.Fm, 72.80.Jc

1. Introduction

Physical-chemical analysis (PCA) of condensed phase chemical systems has
three major purposes [1]. PCA establishes the presence of an interaction between
different components of a mixture, resolves the stoichiometry of the interaction,
and determines thermodynamic characteristics of the resulting chemical processes,
most importantly, equilibrium constants. Currently, PCA is among the most effi-
cient means of determination of the stoichiometry of compounds formed by chemi-
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cal interaction in condensed matter [2, 3]. In those cases when a formed compound
cannot be isolated, PCA is the only method capable of producing compound’s
composition. To a large extent, this fact establishes a place for PCA among other
physical chemical approaches [4-6].

A comparison between the experimental and theoretically calculated compo-
sition—property diagrams is a standard tool in PCA of many-component sys-
tems [1]. Various properties of such systems can be deduced from the experi-
mental data and deviation of the experimental data from the theoretical predic-
tion. A high sensitivity of the electro—optical Kerr effect (EOKE) to many types
of inter-molecular interactions (IMI) is a key to its successful application in the
investigation of many-component systems [7]. However, the complexity and am-
biguity in the interpretation of the experimental data set up limits on the types
of systems amenable to the EOKE analysis [8-13]. Noticeable progress has been
made in the development and improvement of EOKE measurement techniques,
mainly by minimizing the effect of the electric field on a system. Techniques using
a pulsed electric field [12-17] and an alternating field [18] have emerged. Still, the
theoretical difficulties in relating the measured Kerr constant to molecular concen-
trations and characteristics of individual molecules are not overcome. Drawbacks
in equations describing internal fields in complex systems as well as limitations of
the addition scheme in the description of systems with strong IMI are the primary
theoretical obstacles.

A new approach to the studies of conducting systems is offered by the op-
tical Kerr effect (OKE) that is measured by a direct application of the electric
field to the sample, avoiding the electrodes [19]. While OKE is sensitive to the
anisotropy of the optical polarizability tensor of molecules, EOKE is sensitive to
both permanent and induced electric dipole moments [20]. Combined with mea-
surements of other characteristics including dielectric permittivity, light scattering
and molecular refraction, OKE permits determination of molecular properties, ge-
ometries and local structures of investigated media [21]. An excellent review of
the application of OKE to pure liquids, liquid crystals, and plastic crystals can
be found in Ref. [22]. References [23, 24] describe the principles and details of the
experimental procedure and setup.

OKE is analogous to the electric Kerr effect that is observed in static and
slowly varying fields. The differences between the two effects are essential, though.
The frequency of the optical electric field is so high that the field does not change
orientations of permanent molecular dipoles. Only induced dipole moments are im-
portant in OKE, in particular, since they determine the anisotropic part of the Kerr
constant. Due to the high frequency of the applied electric field, OKE is extremely
suitable for studies of aqueous solutions and other conducting systems. The mag-
nitude of OKE is only linearly dependent on temperature. Therefore, OKE can be
used to separate the linear term and to study temperature non-linearities of EOKE.
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2. Application of Kerr constant (B) in physical-chemical analysis
of binary systems

The measured Kerr constant of a pure substance can be expressed by the
following general formula [25]:

1 N
By, = —F —mK 1
x= 1 (n,E)NAmx, (1)

where the function F'(n,¢) describing the intra-molecular field is given by one of
the following expressions:

[(n* +2)(e + 2))°

F(n,e) = a1 (Lorentz field), (2)
F(n,e) = w (Zamkov field), (3)
F(n,e) = ("2“# (Vuks field). (4)

The measured Kerr constant of a binary mixture of non-interacting compounds is
determined through addition scheme as

1 N
B)\1)2 = EF(nl’zgl’z)N;j(xlmI(l + l‘zm[(z)

)
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The physical meaning of F(n,¢) remains the same as for pure compounds. An

1,2

expression for F'(n, <) that is applicable to binary mixtures has been proposed in

Ref. [26]

9 25

F(nlyz,Elyz)I (n ;26—13_2) . (6)
With particular choices of the power 25, Eq. (6) reduces to the above expressions
for the Lorentz, Zamkov, and Vuks fields. In the Vuks—Zamkov model and accord-
ing to the gas-phase theory of non-interacting binary mixtures the value of 25
equals 1. This value is close to 1.2 determined experimentally for the CS;—CCly
binary mixture [12]. The physical meaning of the fractional power remains unclear.

An optimal form of the F(n,¢) function applicable to binary systems with
weak IMI has been developed in a paper [27] and is based on the internal field
model of Scholte [28].

The approach developed in Ref. [10] considers the deviation of the Kerr con-
stant of a binary mixture AB; » from the additive value calculated with a binary
interaction potential. In this approach care must be taken with the definition of
ABq 5 and the choice of F(n,¢). In particular, within the limits of the gas phase
theory of non-interacting binary systems, the molar Kerr constant of the binary
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mixture mK; - is linearly dependent on the concentration of either of the compo-
nents. At the same time, the concentration dependence of B; - is not linear. The
non-linearity must be taken into account in the calculations of the deviations of
the measured B » from the “ideal” curve.

20 binary mixtures characterized by weak IMI have been studied in chlo-
roform [12]. Based on the analysis of binary isotherms of Kerr constants, pos-
sible functional dependence of B; » on the concentration of the second compo-
nent X5 has been considered. Figures 1-3 compare the experimentally determined
property—composition data with those calculated by Eqgs. (5, 6). The Kerr con-
stants By 2 are plotted as functions of the molar fraction X5 of the second com-
ponent of the mixture. The power 2S5 is chosen phenomenologically in order to
minimize the deviation between the experimental and theoretical data. The the-
oretical procedure is described in the original work of Hellwart et al. [26]. Based
on the presented data it is possible to conclude that theory and experiment agree
well only for a limited number of weakly interacting systems. The power 2.5 in the
expression for the internal field (6) is close to 1 for binary systems dominated by

B, x107
12

i

8
(40)

6
(30)
4L
B, x 107 (20)
2t I
2
1} 11 (10)
b ) ; 70
-1 1
v -2
21 [
3 — A . . . 4 ; 1 " s
0 02 X, 0.8 0 0 0.2 X, 0.8 1.0
Fig. 1 Fig. 2

Fig. 1. B2 dependence on the molar fraction of the second component of the following
binary systems: I — chloroform—acetone (25 = 0.3); II — chloroform-anizole (25 = 2);
IIT — chloroform-dioxane (25 = 2); IV — chloroform-cyclohexane (25 = 1.2).

Fig. 2. Bi2 dependence on the molar fraction of the second component of the following
binary systems: I — chloroform—pyridine; IT — chloroform—acetonitrile (2S5 = 0.3);

IIT — chloroform-nitromethane (25 = 0.6); IV — chloroform—dimethylaniline;

V — chloroform—triethylamine. The Bi > scale for I and IT is given in parentheses.
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Fig. 3. Bi> dependence on the molar fraction of the second component
of the following binary systems: I — chloroform—methylformiate (25 = 2);

II — chloroform—chloropropane (25 = 2); III — chloroform—benzene (25 = 1.2);
IV — chloroform—CCly (25 = 1.2).

dispersive IMI. In the presence of a significant dipole—dipole contribution to IMI
satisfactory results can be obtained using the above equations for the internal field
with 25 = 2. All other types of IMI, in particular those characteristics of liquids,
lead to a sharp disagreement between the well-known expressions of the classi-
cal orientation theory and the experimental data. For instance, the experimental
data for the mixtures containing acetonitrile, acetone, and nitromethane are best
fitted with the 25 values equal 0.3, 0.3, and 0.6, respectively. Equation (6) fails
to describe systems that form hydrogen bonds. This is the case for the mixtures
of chloroform with pyridine, dimethylamine, and triethylamine. In general, com-
plex formation can be taken into account by modification of the particle number
density used in the calculation of the internal fields. However, this modification
extends beyond the addition scheme. Thus, addition schemes using analytic forms
of the internal field function F'(n,e) generally fail to describe the experimental
data even for systems with weak IMI. The internal field function can be modified
empirically based on the deviations in the composition—property diagram between
the theoretical values calculated by the addition scheme and the experimentally
determined molar Kerr constants [29].

3. Application of molar Kerr constant (mK) in physical-chemical
analysis of binary system

The molar Kerr constant is determined from the following equation [12]:

B

mK(x) = m, (7)

where A = ”2?:"2 N:M is weakly dependent on n. Within a 5% error n = n, and
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therefore A a2 0.025 and n = 1.35 = 1.55. The theoretical values of mK; » in a
series of chloroform, acetone, and water binary mixtures are calculated with the
help of the equation

Ny nis+2e59+2 .
B = . . : Ky, 8
A2 NAATLLZ ( 3 3 mivy o ( )

It is assumed that the molar Kerr constant of a binary mixture is not additive, i.e.,
m[(lyz ;é X1 - mK1 + o - sz, while lez = l‘lNl + l‘zNz and €12 = X181 + X269
are additive. Figures 4 and 5 show the experimental values of By, , together with
the corresponding values of mK »: the A and (O symbols denote the experimental
data, while the lines are obtained using Eqgs. (5, 6) and (8). The dashed line gives
the additive mK; » values.

In the chloroform series the value of 25 is close to 1, and the dispersive
IMI dominate. The deviations of the molar Kerr constants of the mixtures from
the additive values are insignificant. It may be expected that the additivity in
the molar Kerr constants of binary mixtures will be perturbed by an increasing
contribution of the dipole—dipole interaction. Thus, in the cases where the experi-
mental data can be described by Eq. (6) within the addition scheme, the 25 values
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Fig. 4. Bi2 and mK; 2 dependence on the molar fraction of the second component of
the following binary systems: I — water—pyridine; II — acetone-acetic acid. A and O
denote the experimental values of B12 and m K7 2, respectively. The solid lines represent
B> calculated according to (5, 6) and mK > calculated according to (8). The broken

lines give the additive values of mK ».
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Fig. 5. Bi and mKi» dependence on the molar fraction of the second component
of the following binary systems: acetone—nitromethane (I); acetone-acetonitrile (II);
acetone—chloropropane (III); acetone-triethylamine (IV). A and (O denote the experi-
mental values of B1, and mK 2, respectively. The solid lines represent Bi > calculated
according to (5, 6) and mK 2 calculated according to (8). The broken lines give the

additive values of mKi .

characterize IMI. The 25 value also provides a measure of additivity. According
to [11], 25 = 1 implies that the properties of a binary mixture are simple sums of
the corresponding properties of the components. An absence of additivity suggests
relatively strong IMI.

The following general description of the electro—optical properties of weakly
interacting binary systems can be proposed. Consider a molar Kerr constant mK; -
of a binary mixture as a function of the molar fraction X» of the second component
chosen so as mKy < mKs. The observed deviations of the experimental curve
from the additive straight line can be positive, negative or a combination of both.
Different types of deviations can be explained in the following manner. Suppose
that mKy 2 = 1 -mKj] +x2-mK3, where mK} and mKj3 are functions of X» such
that mKj(z2 = 0) = mK, and mK;(x2 = 1) = mK,. The deviation is defined by
AmK; 5 = o1 mEK1 422 mEKo—mKy 5 = £1-mEi 2o mKo—(x1-mEKf+x,-mK3).
Consider two limiting cases.

Case 1. Let mK} = mK, = const and mK3 = mKs- f(x2). This corresponds
to a complete absence of complex formation between molecules of components
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1 and 2. Polarizability of the first component is independent of the presence of the
second component.

Suppose that dmK5 = & -mKfdes = €1 - mKidas, where £ is a parameter
to be determined experimentally. Solution to this equation with the condition
mK3(xe = 1) = mKs has the form mK¥ = mKs—& -mK;(1—x2). Substitution of
this expression into the equation for AmK; 5 gives AmKy 5 = & -mKy - za(1—22).
If mK% decreases with increasing #, (or decreasing zs3), then & - mK; > 0 and
AmK; 5 > 0. The deviation AmK; » is maximal at z; = 0.5 and reaches the
value AmKPS* = £ - mK /4. Given the experimental value of AmA{* it is
trivial to estimate &;. A general shape of the mK; »(x2) curve is given in Fig. 6a.
Typically, the experimental curve is asymmetric due to a minor dependence of
mK{ on xy. Examples of the experimental curves of this type can be found in
the chloroform—methyl formiate data, where & - mK; & 400, as well as in the
water and acetone series data. In the latter case it 1s the acetone mK-5 that 1s
composition dependent. In the water series mKs of the second component, e.g.,
pyridin or acetic acid depends on xs.

ra) // m{(z 0\ b /AmK: ) /'/ mK, ‘d) // mK, ‘e) —= mK,
0 0

0 0
e ~ / e -~
K
mKp=—"¢ _y m&%g] \ ma By nE, mKl}//Eﬂ 5> meF £ =0

Fig. 6. Possible functional dependence of the molar Kerr constant m K7 > on composi-

tion X2 of a binary mixture.

Case 2. Let mK3 = mKa = const and mK] = mK; - f(22). By the analysis
similar to that of case 1 we have dmK] = & - mK3-dxa = £ - mKa-daxs with
&y -mKs > 0 when mK7 increases with increasing xs. Solution to this equation
under the condition mK7y(ze = 0) = mK; gives mK; = mKy + & - mKs - za.
The deviation AmK; » now becomes AmK; 2 = —&2 - mKs - 22(1 — ). In this
case AmK; 5 < 0. The shape of the curve mK; 2(z2) is shown in Fig. 6b. With
2 = 0.5AMK; 2 = AmK{T}SX — & -mKy /4, and the parameter &5 can be easily
determined. Similar to the case 1, the experimental curve is asymmetric, since
mI5 slightly depends on x2, and the deviation is maximal away from x5 = 0.5.
The curves of the second type are observed much more often than the curves of
the first type. In particular, most of the chloroform mixtures fall into the second
category. The composition dependence is present in the molar Kerr constant of
chloroform, which is more sensitive to the dipolar environment.

General case, case 3. This case includes the possibility of complex forma-

tion. mKy = mK; - f(x2); mK3 = mKsy - f(z2). Under the assumption that
dmK; = & -mKsy-dey, dmKs = & - mK;-dxs, equations of the d?y/dz? = 2y
type are obtained for mK; and mK,, where ¢? = £€y, 9 = z and y is ei-

ther mK} or mKj. The sign in front of ¢? depends on the signs of mK; and
mKs. Solutions to these equations are hyperbolic if the sign in front of ¢? is
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positive: y = ¢ sinh(ex) + ¢z cosh(ex), and periodic if the sign is negative: y =
Dy sin(ca)+ Do cos(ex). With a proper choice of the boundary conditions relatively
complicated expressions for constants ¢y, D, ¢3, Do can be obtained. These ex-
pressions are not transparent and are difficult to relate to experiment. The curves
corresponding to the general case are illustrated in Figs. 6¢c—e. The curve shown in
Fig. 6d is rare. Determination of the &, & parameters individually in the &, > &
or & > &; limits 1s not particularly useful for the qualitative purposes. From the
practical viewpoint it is sufficient to classify the experimental curves to one of the
3 cases described above.

According to the statistical theory of multi-component systems due to Kielich
[30] the deviations of the experimentally determined molar Kerr constants of binary
mixtures from the corresponding additive values can be numerically expressed by
the following expansion:

mi = Zl‘l -mK; —|—Zl‘ll‘] ~mKZ']' —|—Zl‘l “Xj - Tg ~mKZ']'k + -y (9)

i i ijk

where the molar Kerr constants of all orders are composition independent. The first
order constants mK; carry information about individual molecules. The second
order constants mK;; describe the interaction of a molecule of the i-th compound
with a molecule of compound j. The constants miK;; describe the third order
interactions of ¢ with j and &, and so on. The second order constants mK;; depend

on binary correlation functions gl(»;)(n, 7;); mK;;r depend on triple correlations

gl(?;(ri,rj,rk), where 7;,7;, 7 Tepresent translation and rotation coordinates of
molecules i, j, k.

These molecular correlations are not needed for the description of the devi-
ations from additivity in the presence of weak IMI. If stronger IMI take place, the
correlation independent description becomes invalid and binary, triple, etc. corre-
lation parameters reflecting the form and degree of IMI have to be introduced. It
is reasonable to expect that the types of the correlation factors will not change
for other magneto— and electro—optic effects. For instance, comparing Kerr effect
measurements with those of the Cotton—Muton effect one can determine the first
order deviations from additivity. Then, relationships of the experimentally deter-
mined &; and &; can be used to study stronger, nonlinear interactions between
molecules in a mixture. A more rigorous justification of this statement requires
additional experimental investigation.

The general form of the By (z2) and mK (z2) diagrams characterizes IMI in
a given system. For instance, the presence of the two maxima in the By (x2) curve
of the pyridine-water system, Fig. 4, can be interpreted within the limits of the
cluster theory by the following association mechanism. Initially with increasing
concentration, pyridine molecules do not disrupt the short-range structure of the
water lattice and associate only with the free water molecules located between
the structured water clusters. This type of association corresponds to the first
maximum on the B(z2) curve. A sharp increase of concentration fluctuations in



486 Application of the Electro-Optical Kerr Effect . ..

the system and a light scattering maximum support the initial mechanism. With
additional increases in the molar fraction of pyridine the short-range water struc-
ture is disrupted. Pyridin molecules are able to bind to the previously clustered
water molecules. The overall anisotropy of the system is disrupted, and B(xs)
decays. The subsequent growth of B(z2) is no longer related to the concentration
fluctuations, but rather is due to a rapid increase in the dipolar term in the Kerr
constant. The increase is observed when polar associates start decomposing into
ionic pairs under the influence of the polar medium. The second maximum on
the B(z2) curve corresponds to a maximum in £(xs) observed within the same
concentration range.

Schematically, the association in the pyridine—water system can be expressed
as

Py + HZOfree = Py : HZOa

2Py + HZOstruct = PY2 ‘ HZO = Py + OH_ —|— PyH+

This association mechanism agrees well with the results of Vuks [31] and Fialkov

et al. [32].

4. Physical-chemical analysis of binary systems in solution,
the isomolar series method

PCA of binary systems with a strong donor-acceptor interaction, for in-
stance, in the case of H-bonding, can be carried out in a sufficiently inert, typi-
cally nonpolar solvent. The analysis in this case is done by the method of isomolar
series [33]. The equations used in the isomolar series EOKE approach properly ac-
count for the changes in the concentrations of solution components due to complex
formation [34]. PCA is performed in the polarization—composition coordinates.
Formally, both polarization and molar Kerr constant can be denoted by a general
additive characteristic symbol P. The following equation holds:

Papc = (Psap — Pszl)/(2% + &), (10)
where the indices A, D, S, C refer to the acceptor, donor, solvent, and complex,
respectively. ¥ are the prepared molar fractions of the solution components, sat-
isfying Zle ) = 1. Reference [34] suggests several methods for determination
of the partial property P¢, including a graphical extrapolation and two versions
of an analytic extrapolation in the isomolar series region. Under the assumptions
that component A is in excess of component D and the molar fraction of the latter
approaches 0, the methods systematically account for the changes of the number
of moles (particles) in the system due to the complex formation. The graphical
extrapolation determines the compositions of the complexes by the extrema of the
traditional expression APspc = Papc — PAl‘% — prg. With the excess of one
of the complex components, equations Pac = (Psac — Ps)/Zac + Ps, #ac =
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2% + 2% (1 —va)l/vpZ, and Z = % + 2% (1 — va)/vp are used to determine the
values of the “apparently” additive property P4 of a binary system. As before,
the indices A, D, C, S refer to the acceptor and donor components A, D, com-

plex C, and solvent S. 2%, zf, are the initial molar fractions of components A
0

and D in a binary mixture. &; are the molar fractions of the components of the
solution in a tertiary mixture. v4 and vp are the stoichiometric coefficients of the
complex of a known composition. The graphical extrapolation of the P values as
functions of the molar fraction zY, is carried out in the limit of %, — 0 and using
the expression Pc = (Pac — Pa)vp/29 + Pa. Polarization, molar Kerr constant
or another additive property of the complex . Pc = lim Po is obtained in this
manner.

The graphical extrapolation of a property P of a complex has the same draw-
backs as the extrapolation of P of individual compounds. Generally, it is not as
accurate as an analytic extrapolation. Two versions of analytic extrapolation were
developed [34]. According to the first version oo Po = [co P’ — Ps(va + vp)]/xai +
Ps(va+vp), where — P/ = limx%_,o QSA;;DD;PSAVD + (va +vp)Psa, and 29, is
the molar fraction of component A in the origin of the isomolar series defined by
D = 0. The molar Kerr constant P = mK¢ is given by

r— -/ - M 2e54 477«%,4

wP! = (mK') = Kga [M—SA + (6 -3 - o 5%~ " 27) I/D:| , (11)
where Kggq = GARSABSAMSA/(R%A +2)2(ESA +2)2d5A; Mga = Mgi‘% —|—MA1‘942»;
M = Mga(va +vp) + 3%, (Mp — Ma). The coefficients «, 3, 7, & enter the
expressions esac = £5a(l+awD®); dsac = dsa(14+32%); ngac = nga(14+72%);
Bsac = Bsa(l + 61‘%), and reflect the dependences of the dielectric constant ¢,
density d, refractive index of light n, and Kerr constant B of the solution on the
initial molar fraction x9%,. The latter approaches zero, i.e., A > D.

The second version of the analytic extrapolation is based on the assump-
tion that with a significant excess of component A in the S+ A 4+ D system and
a complete suppression of the A,, D, complex dissociation, the concentration de-
pendence of dielectric permittivity, density, refraction index, and Kerr constants B
of a solution can be expressed by egax = eg(1 + @ada + acic). As aresult, ac

is determined by equation a¢ = f?a—g%‘ig Yoo + aa[l + (va +vp — 1)z8]. Pa-
B

rameters S¢, Yo, and 8¢ are determined similarly. Parameters a4, G4, 74, 64,
characteristic of solutions of individual components are obtained by the well-known
approach [35].

The molar Kerr constant o (mK¢) of a complex is calculated by the following
formula due to Briegleb [36]:

M, 2 4n?
wo(mEc) = mKs (VC —Be - —ac+ 52
S

160 ), 12
55‘1'2 n%_i_QPVC C) ( )

where mKg = GARSBSMS/(R% + 2)2(65 + 2)2d5; Me = Mava + Mprp.
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A practical application of the extrapolation methods is illustrated with the
pyridine — p-chlorophenol system in heptane [34]. The extrapolated results are com-
pared with the data of other approaches. Satisfactory agreement in the o (mK¢)
values obtained by all methods is observed.

The isomolar series method produces reliable data when complexes are ther-
modynamically stable. If this is not the case, complex dissociation should be ac-
counted for in the calculation of the ; Po values. Typically, the dissociation in-
creases 1 Po. Reference [37] modifies the first version of analytic extrapolation to
include the possibility of dissociation. Complexes of the 1:1 composition are treated
in Ref. [37] explicitly. The dissociation of complexes of other compositions can be
handled in a similar manner.

The ;P values of the 1:1 complexes are defined in terms of the ., Po values
by the following expression:

1Po =[P — (1 —wy)(Pa + Pp)]/wo, (13)

where P4 and Pp are either molar polarizations or molar Kerr constants of
the original components. wg = limp_o[D]/[Do] is the degree of complexing of
component D in the limit of #p — 0. The values of wy are calculated from
wo = k\/(2—k)/k, where k = 2%,[wPc — (Pa + Pp)]/2AP, 2%, is the con-

centration of component A in the origin of the isomolar series. AP is the deviation

£ PSAD,
2.4_5 - cm’
2.40}F
27.0
2301
0.40} N\ 207, 5.0
Q,%Y" O:I‘ o
035k .7 J 260 45
) 2, AK
0.30} 4.0
s ] : f
A 0.5 D A 0.5 D
Fig. 7 Fig. 8

Fig. 7. The isomolar series determination of the o, § parameters for the N-methylimi-
dazole (A) — p-chlorophenol (D) system in dioxane.

Fig. 8. Psap and Ksap as functions of composition of the N-methylimidazole (A) —
p-chlorophenol (D) system in dioxan. The plots illustrate determination of AP and AK

in the calculation of K¢ of the complexes.
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of property P from additivity. The deviation is calculated for a tertiary system
at its maximum. The values of wg produce thermodynamic stability constants K¢
according to the equation K¢ = wp/(1 — wp)zY, N, where N is the total molality
of the initial solution in the isomolar series.

The 1somolar series approach to the determination of ;Pr and K¢ is il-
lustrated by the N-methylimidazole — p-chlorophenol system in dioxane, Figs. 7
and 8. The predicted maximal degree of complex formation is only 60-63% for
this example [37], but equals 87% in the pyridin — p-chlorophenol system in hep-
tane. These results agree with the corresponding data obtained by independent
physical-chemical approaches.

5. Internal field of liquids

An adequate description of the internal field in a condensed phase dielectric
is a prerequisite that is often missing preventing a wider application of EOKE
in PCA.

The available models of the internal field can be classified into two categories.
The first one encompasses the approaches that use the Lorentz functional form of
the internal field and vary the field contribution to the theoretical expression for
the Kerr constant. Approaches of the second kind replace the Lorentz function by
a function that follows from a more sophisticated model of the internal field [38].
Thus, the theory of Onsager [39] leads to the following expression for the molar
Kerr constant:

1 2T N
mK=——-———_[mK°— af@l) , 14
e 9 (9
where f = 2(c — 1)/r3(2e + 1), ¢ = 2(n%? — 1)/r3 (2n? + 1), r is a characteristic
molecular radius, K" is the gas phase molar Kerr constant, ¢ and b are some

constants, and @ is the anisotropic term of the Kerr constant. The molar Kerr
constant in the Onsager model can be calculated knowing the molar Kerr constant
in the Lorentz model and the macroscopic parameters of the medium (¢ and n)

. 2
by the formula: mK(Ons.) = mK(Lor.) [%] . More general theories

account for molecular asymmetry. The theory of Scholte [28] gives the following
expression for the molar Kerr constant [40]:

2N [ 1 1 \ \
MR = = | BT = a1 = by) D (bimii = bjgmy ) (aiiks — ajjk3;)

1 1
by — biimi 2k — p2k2,
+45]€2T2 (1 _ le)(l _ bf) Z( m ]]m]])(ﬂz i1 ﬂ] ]])
Here, m;; = (2n% +1)/[3n2 4+ 3(1 — n?)O1]; ki = (2¢ + 1)/[3c + 3(1 — £)O;]; O; is
the ellipsoid constant [41, 42]. Applications of the ellipsoid model to solutions can
be found in Ref. [42].
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Equations of this type contain parameters that are hard to determine. The
theories that work within the limits of the Lorentz internal field defined in terms
of the (n? +2)/3 and (¢ +2)/3 functions avoid the parameterization problem. The
phenomenological theory of the Kerr effect created by Zamkov [43-45] considers
the energy of a molecule subject to an electric field and leads to the following
equation for the Kerr constant

Ny (02 42\ e42
3 3 3

which is different from the ordinary expression only by the first power of the
(e +2)/3 function. A more general expression [45] includes the internal field due
to Bottcher

B =

(01 + 693),

nZ 42

BIﬂ'Nl 02

Foty 9e* o
( _1—fb3k—T) (2 + 1)2(1 — fbyz °

s ()|

where @5 is the dipolar and @3 is the Voigt term. A similar result has been obtained
by Vuks by consideration of the Lorentz—Lorenz equation for the condensed media
[31, 46]. The analysis of Vuks shows that a straightforward replacement of the
external field in the gas phase by the internal field in the liquid phase is not
acceptable and that the first power of the (¢ + 2)/3 factor is required.

The differences in the internal field functions stipulate the changes in the

extrapolation formulas used in the experimental determination of the molar Kerr
constant [25]

- . M1 261 277,%—4
(mK)y = mEK, [ 22— = _ 5) .
(mA) m”(Mz = 22t

Differentiation of the Vuks-Zamkov equation [46] leads to the following expression:

o(mK)s = mkK, (% 5 eli St nzi S+ 5) .
A systematic analysis of the variations of the internal field model obtained within
the limits of various theories as well as an assessment of the Kerr constant data
that follows from these theories can be found in Refs. [47-49].

The assumption that the polarizability ellipsoid, dipole moment, and hyper-

polarizability parameters are molecular constants independent of density, pressure,
temperature, and solvent forms the foundation of the physical-chemical methods
based on molecular optics. It is clear that the assumption holds only approximately.
IMI directly affect molecular electronic structure and, therefore, change molecu-
lar polarizability and other molecular properties. It is necessary to find ways of
elimination of the many-body by either a calculation or additional measurements.
Condensed phase theories of the Kerr constant that account for correlation of
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molecular orientation form a separate category. The statistical-mechanical theory
of Buckingham [50-53] is one example. This theory explicitly considers IMI as well
as the dependence of molecular polarity and polarizability on the field strength.
Typically, theories of this type involve complicated models and produce parame-
ters that are difficult to determine. As a result, application of these theories to the
calculation of the polarizability anisotropy is rather complicated.

The hyperpolarizability contributions to the Kerr constant have been esti-
mated in Refs. [54, 55]. An attempt to develop a more complete theory of the Kerr
effect in condensed media that accounts for the hyperpolarizability contributions,
orientation correlations, IMI, electrostriction and the Joule effect has been carried
out by Proutiere [56]. The traditional spherical model has led to the equation

B__27N1<n2+2)26+2 20

An 3 3 135kT
Here, 8 and I are the spherically averaged first and second hyperpolarizabili-

(10F + Op+ 61+ @2) .

ties. The temperature independent term can be neglected in the investigation of
strongly anisotropic molecules, for example, aromatic compounds.

Reference [7] presents a comparative analysis of the main approaches to the
description of the internal field in the calculation of the Kerr constant. The calcu-
lated molar Kerr constants obtained for the gas (mK %) and liquid (mK") phases
have been investigated using the following theories: the classical Langevene—Born
theory with the Lorentz field (mKJ), the theories of Vuks (mK¥) and Zamkov
(mK%Y), the theories based on the Onsager (mK§) and Scholte fields (mK{') as
well as the Kielich procedure involving a Taylor series expansion in the solute
concentration (mKE). It is found that mKE, mKL, mKL give best results. All
models under study are ranked as follows: mKL ~ mK& < mKE ~ mKY <
mKy & mKy < mKS.

In a series of papers [57-62] we have developed expressions for the Kerr con-
stants of liquids and molar Kerr constants of solutes that are based on the classical
Langeven—Born theory. The following additional factors have been accounted for:
the anisotropy of the electric field of the probe light wave, the reactive field of
Onsager molecular moments interacting with the medium, the differences between
molecular dipoles in the liquid and gas phases. The expressions employ Onsager in-
ternal fields that have been modified for polar liquids. Applications of the derived
equations for the Kerr constant to real systems and tests of the modified cavity
and reactive field expressions indicate that the approach has a good potential for
further development and application of the Kerr effect in PCA.

6. Conclusions

Application of the Kerr effect to the physical-chemical analysis of binary sys-
tems provides reliable information about intermolecular interactions. When inter-
actions are strong, an extension of the additive approach and account for molecular
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correlations are required. The experimental data agree with the statistical theory
of the Kerr effect due to Kielich. The theory concludes that the deviations of the
molar Kerr constants of binary mixtures from the additive values are generally de-
termined by molecular correlations, whose order depends on the specific character
of intermolecular interaction.

Application of the electro—optical Kerr effect to the investigation of binary
systems in inert solvents provides both structures of donor—acceptor complexes,
and equilibrium constants for complex formation.

Further progress in the physical-chemical applications of the electro—optical
Kerr effect depends on a proper description of the internal fields of liquids and
improvements in the theories of optical properties of molecular aggregates.
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