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Th e M ott { H ubbard tra nsition in the three -dimension al H ubbard model
is studied by means of the comp osite operator metho d . A nalytical and nu-

merical calculati ons show the existence of a critical value U c of the Coulomb
interaction which separates parama gnetic insulatin g and metallic phases. I n
the comp osite operator metho d the ratio U c = W , where W is the band w idth,
has the same value as in the two- dimensional case. T he ground state of the

Mott insula tor is characteri zed by a local antif erromagnetic order w here the
electrons keep some mobility , but this latter must b e compatible w ith the
local ordering. By analyzi ng the intersite hopping it is possible to establis h

that some correlation functions b ehave as order parameters in the insul atin g
phase.

PAC S numb ers: 71.10.{w , 71.10.Fd, 71.30.+ h

1. I n t rod uct io n

T he study of strongly correla ted electron system s has a long history . Pro ba-
bl y, the beginni ng of these studi es can be tra ced back to a conference on electri cal
conducti on m echanisms, held in Bri sto l in 1937 [1], where de Boer and Verwey
presented [2] conducti vi ty data for som e tra nsiti on m etal oxi des. Al m ost al l mate-
ri als demonstra ted insulati ng behavi or at room temperatures. However, accordi ng
to Bl och theory they should be m etals, because a sim ple account of the num ber
of 3 d electro ns gives a parti al ly Ùlled 3 d bands. The autho rs pro posed tha t the
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Co ulomb repul sion between 3 d electrons m ight be responsi ble for barri er for tun-
nel l ing between neighbor sites. In the f ol lowing di scussion Peierls pro posed tha t
the Coulomb repul sion leads to the parti cle localizati on: \ i t is qui te possibl e tha t
the electro stati c intera cti on between electrons prevents them from m ovi ng at all " .
Theref ore, the Bl och wa ve theo ry could not describe the behavi or of the mate-
ri als and it was necessary to Ùnd another proper m odel . Then, beginni ng f rom
1949, Mo tt in a series of wo rks [3] summ arized the ideas proposed and suggested
a new vi sion of the probl em, whi ch is kno wn now as the pro blem of the Mo tt
insul ato r. He estim ated tha t the insulati ng gap in the electro n spectra is of the
order of the Coulom b repul sion integ ra l on the same site. Theref ore, i t became
m ore evi dent tha t the strong electron correl ati ons are crucial in these phenomena.
Beginning from tha t ti me the theo reti cal physi cists started to m odel and inv esti -
gate the behavi or of strongly correl ated electro nic system s. The simpl est ẽ ecti ve
m odel whi ch takes into account these correl ati ons is the Hubba rd model (HM)
[4]. Its Ha mi l to nian consists of a ki neti c term , describing the inter- site hoppi ng of
electrons, and a potenti al term describi ng the intra -site Coulom b repul sion. In the
early years the Hubba rd m odel inv estigati ons were devoted m ainly to the study
of the Mo tt tra nsiti on in vanadi um and ti ta nium oxi des (the resul ts for V 2 O3

are summari zed in [5]). From the Ùrst works there has been an extensi ve study
of thi s m odel (f or overvi ew see, for exam ple, R efs. [6] and [7]). Ho wever, af ter
m ore tha n thi rty years a real ful l understa ndi ng of i ts pro perti es is sti l l lacki ng.
The model has two exact solvable l imi ts, U = 0 , when the Coulom b intera cti on is
absent, and t = 0 , the ato m ic l imit, when the inter- site hoppi ng is absent. Unf or-
tuna tel y, the soluti on in the interm ediate case of Ùnite t and U i s sti l l lacking. In
the one-dim ensional (1D ) case the Hubba rd m odel is exactl y integrabl e by m eans
of the Bethe ansatz (BA) [8] and the ground state wa ve functi on is kno wn [9]. In
thi s way many pro perti es are kno wn exactl y wi thi n the num erics needed in the
case of arbi tra ry parti cl e density and Ùnite tem perature. Ho wever, the BA does
not pro vi de a com plete fram ework for describing the physi cs of the 1D Hubba rd
m odel since many pro perti es, l ike the correl ati on and spectra l functi ons, cannot
be evaluated f rom the BA wa ve functi on except f or some l imi ti ng cases.

D espite the absence of real ly sati sfactory trea tm ents, the Hubba rd model is
one of the m ost importa nt models of the condensed m atter physi cs to day. The
m odel can describe not only a m etal { insulato r tra nsiti on [4, 10, 11], but also anti -
ferrom agneti sm [12], ferrom agneti sm [13], superconduct ivi ty [14], and m any other
phenom ena.

The Hubba rd model inv estigati ons have received a new impul se af ter the
di scovery of high- tem perature superconduc to rs (HTSC). Superconducti ng oxi des,
such as La 2 À x Sr x CuO 4 , Nd 2 À x Cex CuO 4 , YBa 2 Cu3 O 7 À y and Bi 2Sr2Ca Cu2 O8+ £ ,
have a layered structure of hole dyna m ics and in the underdo ped regim e are in
an anti ferrom agneti c insulati ng state. D ue to thi s, studi es concerni ng HTSC have
been carri ed out m ainly in two-dimensional m odels. Ma ny appro aches have been
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pro posed to study the 2D Hubba rd m odel . Am ong them we cite the slave boson
m etho d [15], the d 1 metho d [16, 17], the pro j ection operator m ethod [18], the
composite operato r m etho d (COM) [19a{ 19d] . There are many evidences now tha t
thi s model can describe some of the HTSC properti es. For exampl e, i t was shown
[20] by using the COM tha t thi s m odel can qual i ta ti vely describe the behavi or of
several pro perti es of cupra te compounds in the norm al state.

R elati vely not m uch attenti on has been paid to the study of the three- dim en-
sional (3D ) Hubba rd model in the last years. Ho wever, there are several reasons
for study such a m odel . Fi rst, there are some oxi des wi th 3D strong electro nic
correl ati on structure, for exampl e YTi O 3 , SrVO 3 , Y 1 À x Cax Ti O 3 , Sr1 À x La x Ti O3

and La 2 CuO 4 + £ , whi ch have been exp erimenta l ly investi gated in the last years
(see, for instance, [21{ 29] and for an overvi ew [7]). The possibi l ity of describing
photo emission results for YTi O 3 and some other m ateri als [21{ 23] has been also
considered. In som e perovski te oxi de wi th 3 d 1 conÙgura ti on (Ti 3 + , for exampl e)
the hoppi ng ampl i tude t can be changed by varyi ng d À d neighbori ng overl aps due
to a tetra gonal di storti on. Thi s m eans tha t the changing of com positi on leads to
varyi ng the rati o U =t . The Mo tt tra nsiti on has been observed in the series SrVO 3 ,
Ca VO 3 , La Ti O3 , YTi O 3 . At smal l U =t and half -Ùll ing, near E F a quasiparti cle and
a high-energy band, the latter corresp ondi ng to the lower Hubba rd band (LHB),
were observed. Then, the spectra l wei ght is redi stri buted from the quasiparti cle
band to the LHB by increasing U =t (see [17, 21, 30]). Al so, the m etal { insul ator
tra nsiti on dri ven by the band Ùll ing changing due to v aryi ng the chemical com po-
siti on has been observed [23, 26, 31]. Thus, Y 1 À x Cax Ti O 3 passes from the anti -
ferrom agneti c insul ati ng to meta ll ic sta te as x increases. Two Hubba rd subba nds
are vi sibl e in a wi de range of x . (The theoreti cal descripti on of thi s phenom ena
has been perform ed in [32] (see also [17, 33]) and [30] in the D = 1 and D = 3

Hubba rd m odel .)
Second, the study of the 3D Hubba rd model may be useful for understa ndi ng

the physi cs of the HTSC whi ch are layered stro ngly correl ated m ateri a ls, i .e. they
exhi bi t a behavi or interm ediate between 2D and 3D structure.

Let us menti on som e of the works devoted to the 3D Hubba rd model whi ch
have appeared duri ng the last 10{ 15 years. Spectra l pro perti es of the m odel were
studi ed in [30] by using the Mo nte Carl o m ethod, and in [34] and [35], in the
weak- in tera cti on l im i t, by using the U -expansion. One-electro n energy was cal-
cul ated in [36] by using an ato mic basis wi th W anni er functi ons. Recently, the
possibi l i ty of the Mo tt tra nsiti on in the 3D Hubba rd m odel was studi ed in [37] as
a l imiti ng case of the m any- plane HM. The spectra l and m agneti c properti es of the
m odel were studi ed in [38] by usi ng the Ûuctua ti on-exchange and the two -parti cle
self-consistent appro xi mati on in the weak-coupl ing regime. Ma gneti c properti es of
the model were studi ed num erical ly in [39{ 41] and in [42, 43] along wi th therm o-
dyna mic ones in order to inv estigate the possibi l i ty of NÇeel tra nsiti on. The autho rs
of the papers [44, 45] m apped spin exci ta ti ons on tho se of the e˜ecti ve underl yi ng
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Hei senberg m odel to Ùnd the anti ferro magneti c cri ti cal NÇeel tem perature and to
describe the magneti sm in the 3D Hubba rd m odel . The m agneti c phase di agram
wa s studi ed at second order in [46]. Ma gneti c properti es in the 3D Hubba rd m odel
at ha l f-Ùll ing were also studi ed in [47] by using the l inked- cluster series expansion
m etho d. In a series of papers [48{ 51] the magneti c and therm odyna m ical proper-
ti es of the model were studi ed by using the Gutzwi ller vari ati onal appro ach and
the single-site spin Ûuctuati on theory . The ground state energy wa s calculated an-
alyti cally in [52] at smal l U at second order. The phase di agram of the 3D Hubba rd
m odel was studi ed in [53].

In thi s arti cle we consider the param agneti c soluti on of the three- dim ensional
Hubba rd model by means of the composite operato r metho d [19a{ 19d]. The moti -
vati on is to study the Mo tt{ Hubba rd tra nsiti on and the nature of the ground state;
theref ore, we concentra te the analysis to hal f-Ùll ing and to zero temperature. By
studyi ng the chemical potenti al and the density of states we Ùnd tha t there exists
a cri ti cal value U c of the Coul omb potenti al whi ch separates a param agneti c m etal
for U < U c and a Mo tt À Hubba rd insul ato r for U > U c . Thi s cri ti cal potenti al is
determ ined by a self-consistent equati on and is m ainl y contro lled by the intersi te
Ûuctua ti ons. W e can show tha t at zero tem perature the doubl e occupancy rem ains
Ùnite in the insulati ng phase and tends asympto ti cal ly to zero as U ! 1 . The
resul t tha t in the insul ati ng phase there exists a smal l f racti on of doubl y occupi ed
and empty sites is also conÙrm ed by our study of the density of states. By decom -
posing the electron operato r as c = ¿ + ² , where ¿ and ² are the usual Hubba rd
operato rs describing the tra nsiti ons ( n = 0 ) , (n = 1 ) and ( n = 1 ) , ( n = 2 ) ,
respect ively, we have studi ed the contri buti on of ¿ and ² to the density of sta tes.
As many analyti cal and num erical results also show, in the insul ati ng phase the
electron density of sta tes is spli t into two bands, the lower and upp er Hubba rd
bands, but there is always a contri buti on of ¿ ( ² ) to the upper (l ower) band. Fur-
therm ore, the cross term h ¿² y

i contri butes to the density of states in a signi Ùcant
wa y around the Fermi level, even for large values of U .

These results open questi ons about the nature of the ground state and the
identi Ùcati on of an order param eter. To answer these questions we have studi ed
the quanti ty h c (i ) c y ( j ) i , whi ch gives the pro babi li ty am pl i tude of hoppi ng f rom
site i to site j . By m eans of the decom positi on c = ¿ + ² we are abl e to study how
the latter quanti t y depends on the average occupati on of the sites i and j . W e
have investigated up to the thi rd nearest neighbors, but the analysis can be easily
extended to any distance, by symm etry considerati ons. The picture tha t emerges
by thi s study is tha t an anti ferromagneti c order is establ ished in the insul ati ng
phase, but the situa ti on is not the one as in the Hei senberg anti f erromagnet where
al l electrons are frozen on the sites. The ground state is characteri zed by a small
fracti on, dependi ng on the value of U , of empty and doubl y occupi ed sites; the
electrons can hop am ong sites, but there are stro ng constra ints on thei r m obi l -
i ty such tha t the anti ferromagneti c local order is not destro yed. The probabi l i ty
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am pl i tudes h ¿( i )¿ y ( j o dd ) i and h ² ( i ) ² y ( j odd ) i , where j odd i s an odd nearest neigh-
bori ng site of i , vanish at U = U c and rem ain zero f or al l U > U c , putti ng a
constra int on the electro n m obi l it y. We might ta ke these quanti ti es as the ones
tha t characteri ze the order in the insul ati ng phase. Thi s picture is consistent wi th
the fact tha t there is a com peti ti on between the i ti nerant and local izing energy
term s; for any Ùnite v alue of t there is always a smal l contri buti on com ing f rom
ki neti c energy whi ch al lows the hopping am ong sites. However, a t a certa in value
of U a local m agneti c order is establ ished and the hoppi ng is severely restri cted.
Onl y in the l im it of inÙni te U the electro n m obi li ty is to tal ly forbi dden and the
system becom es a Hei senberg anti ferro magnet.

In Sec. 2, by means of the techni que of the equati ons of moti on, we derive
the expl icit expression for the reta rded Green functi on (G F) in the two -pole ap-
pro xi mati on. The GF depends on som e param eters tha t must be self-consistentl y
calculated. By requi ri ng tha t the representa ti on of the GF sati sÙes sym m etry
constra ints, a set of self-consistent equati ons is derived. By solvi ng these equa-
ti ons in Sec. 3 we study the probl em of the Mo tt tra nsi ti on. The existence of
m etal { insul ato r tra nsiti on is inv estigated by looki ng at the chemical potenti al , the
density of sta tes and the probabi l i ty ampl i tudes h c( i ) c y ( j ) i . Som e conclusi ons are
dra wn in Sec. 4. Deta i ls of calcul ati ons are reported in App endix.

The Hubba rd model is described by the f ollowing Ha m ilto nian:

H = H + H : (2 .1)

H i s the ki neti c term whi ch describes the m oti on of the electrons am ong the sites
of a Bra vais latti ce spanned by the vectors :

H = (t ñ £ ) c y ( i )c ( j ) : (2 .2)

c (i ) ; c y ( i ) are anni hi lati on and creati on operato rs of electrons at site i = ( ; t ) in
the spinor nota ti on

c =
c

"

c
#

; c y = ( c
y

"
c

y

#
) (2 .3)

and sati sfy canoni cal anti commuta tio n rela ti ons

c ( ; t ) ; c y ( ; t ) = £ £ ;

c ( ; t ) ; c ( ; t ) = c y ( ; t ) ; c
y

( ; t ) = 0 ; (2 .4)

ñ i s the chemical potenti al , t denotes the tra nsfer integra l between di ˜erent sites.
W e Ùx the scale of energy in such a way tha t t = 0 . In addi ti on to the band energy
the m odel conta ins an intera cti on term whi ch appro xi mates the correl ati on am ong
the electro ns. In the simpl est form the intera cti on is between electro ns of opp osite



510 F. Manci ni , V. Tur kowski

spi n on the sam e latti ce site; the strength of the intera cti on is described by the
parameter U :

H U = U
X

ii

n
"

( i ) n
#

( i ) ; (2 .5)

where n ¥ ( i ) = c y

¥ ( i ) c¥ ( i ) i s the num ber operato r for the electrons wi th spin ¥ . In
the nearest-neighbor appro xi m atio n the hoppi ng m atri x f or a d -dim ensional hyp er
cubi c latti ce wi th latti ce constant a ta kes the form t ii jj = À 2 d t ˜ ii jj , where ˜ ii jj i s
the pro jector on the nearest neighbor sites

˜ ii jj =
1

N

X

kk

ei À ˜ ( ) ; ˜ ( ) =
1

d

d

n

cos( k n a ) ; (2 .6)

N i s the numb er of the sites and the summ atio n runs over the Ùrst Bri l louin zone.
A conveni ent basis to study thi s model is given by the com posite Ùeld

ê ( i ) =
¿(i )

² ( i )
; (2 .7)

where ¿( i ) and ² ( i ) are the Hubba rd Ùelds

¿( i ) = [1 n ( i ) ]c ( i ) ; ² ( i ) = n ( i ) c ( i ) : (2 .8)

The Ùeld ¿( i ) i s responsible for the tra nsiti ons 0 ¥ , whi le ² ( i ) ta kescare of the
tra nsiti ons ¥ . 0 denotes the state wi th no c -parti cles. n ( i ) = c y ( i ) c ( i )

i s the to ta l numb er operato r. The Hei senberg Ùeld (2.7) sati sÙes the equati on of
m oti on

i
@

@t
ê (i ) = J ( i ) =

ñ¿ ( i ) 2 d t [ c ˜ ( i ) + ¤ ( i )]

( U ñ ) ² ( i ) + 2 d t¤ ( i )
; (2 .9)

where ¤ (i ) i s a hi gher-order com posite Ùeld deÙned as

¤ ( i ) =
1

2
¥ ñ n ñ ( i ) c ˜ ( i ) + c ( i ) c ˜ ( i ) c( i ) : (2 .10)

We have intro duced the charge ( ñ = 0 ) and spin ( ñ = 1 ; 2 ; 3 ) density operato r
n ñ ( i ) = c y ( i ) ¥ ñ c (i ) . ¥ ñ are the Paul i m atri ces, wi th the nota ti on ¥ ñ = (1 ; ) and
¥ ñ = ( 1 ; ) . For any operato r ` , the notati on ` ˜ ( i ) stands for

` ˜ ( i ) = ˜ ` ( j ) : (2 .11)

In order to solve the Hei senberg equati on (2.9) we pro j ect the source J ( i ) on the
basic Ùeld

J ( i ) = " ( ; ) ê ( j ) : (2 .12)

In the weak sense the m atri x " ( ; ) is determ ined by the fol lowing equati on:

J ( ; t ) ; ê y ( ; t ) = " ( ; ) ê ( ; t ) ; ê y ( ; t ) : (2 .13)



Study of the Mot t Transi tion . . . 511

The nota ti on h Â Â Âi stands for the quantum stati stical avera gein the grand canoni cal
ensemble.

Let us consi der the therm al reta rded Green f uncti on

S ( i; j ) = h R [ ê ( i ) ê y ( j )] i = ˚ ( t i À t j ) h f ê ( i ) ; ê y ( j ) g i : (2 .14)

By m eans of (2.12) the Fouri er tra nsform of S ( i; j ) sati sÙesthe equati on

[ ! À " ( k )] S ( k; ! ) = I ( k ) ; (2 .15)

where " ( ) i s the Fouri er tra nsform of the energy m atri x " ( i; j ) and I ( ) i s the
norm al izati on m atri x

I ( ) = F:T : ê ( ; t ) ; ê y ( ; t ) : (2 .16)

The sym bol F.T . denotes the Fouri er tra nsform . The soluti on of (2 .15) is given by

S ( ; ! ) =

n

¥ n ( )

! E n ( ) + i£
; (2 .17)

where E n ( ) are the eigenvalues of the matri x " ( ) and the spectra l functi ons
¥ n ( ) can be calculated by m eans of the equati on

¥
n

a b
( ) = ¨ an ( )

c

¨ À

n c ( ) I cb ( ) ; (2 .18)

where ¨ ( ) i s the 2 2 m atri x whose colum ns are the eigenvecto rs of the m a-
tri x " ( ) . By consideri ng a paramagneti c homogeneous state, stra ightf orw ard cal-
cul ati ons give the fol lowi ng resul ts. The energy spectra E n ( ) and the spectra l
functi ons are given by

E ( ) = R ( ) + Q ( ) ; E ( ) = R ( ) Q ( ) ; (2 .19)

¥ ( ) =
I

2
1 +

g ( )

2 Q ( )
; ¥ ( ) =

I

2
1

g ( )

2 Q ( )
;

¥ ( ) =
m ( )

2 Q ( )
; ¥ ( ) =

m ( )

2 Q ( )
;

¥ ( ) =
I

2
1

g ( )

2 Q ( )
; ¥ ( ) =

I

2
1 +

g ( )

2 Q ( )
; (2 .20)

where

R ( ) = ñ 2 d t˜ ( ) +
1

2
U

m ( )

2 I I
; Q ( ) =

1

2
g ( ) +

4 m ( )

I I
; (2 .21)

g ( ) = U +
1 n

I I
m ( ) ; m ( ) = 2 d t [ Â + ˜ ( )( p I )] : (2 .22)

I ab ( ) are the elements of the norm al izati on m atri x

I ( ) =
I 0

0 I
; I = 1

1

2
n; I =

1

2
n: (2 .23)
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n = h c y ( i ) c( i ) i i s the avera geparti cl e numb er per site. The parameters Â and p de-
scribe a constant shift of the bands and a band wi dth renorm alizati on, respectively.
They are stati c intersi te correl ati on functi ons deÙned as

Â ² h ¿ ˜ ( i ) ¿ y ( i ) i À h ² ˜ ( i ) ² y ( i ) i ; (2 .24)

p ²

1

4
h n ˜

ñ
( i ) n ñ ( i ) i À h [ c

"
( i ) c

#
( i )] ˜ c y

#
( i )c y

"
( i ) i : (2 .25)

The correl ati on functi on C ( i; j ) = h ê (i ) ê y ( j ) can be calculated f rom (2.17) by
m eans of the spectra l theo rem and has the expression

C ( i; j ) =
¨

(2 ¤ ) d

n
¨

dd k e Â À À E n ( )( t i t j ) 1 f [ E n ( )] ¥ n ( ) : (2 .26)

¨ and ¨ are the volumes of the uni t cell in the di rect and reci procal latti ces,
respect ively. f [ E n ( )] = [eÙ E

+ 1 ] À is the Ferm i distri buti on functi on. The
Green functi on S ( i; j ) and the correl ati on functi on C ( i; j ) depend on the interna l
parameters ñ; Â ; p , whi ch m ust be self-consistentl y determ ined. In the fram ework
of the COM these param eters are Ùxed by the fol lowi ng set of coupled equati ons:

n = 2 (1 C C ) ; (2 .27)

Â = C ˜ C ˜ ; (2 .28)

C = 0 ; (2 .29)

where we use the nota ti on C = ê ( i ) ê y ( i ) ; C ˜ = ê ˜ ( i )ê y ( i ) .
As wel l kno wn, the equati ons of m oti on are not su£ cient to determ ine the

Green functi on. General ly speaki ng, thi s quanti ty is deÙned as the quantum sta-
ti sti cal avera ge of som e operato rs on a given vecto ri al space. The Hi lbert space,
where the operato rs act, must be deÙned. In the ordi nary perturba ti on theory
the Green functi on is expressed in term s of the f ree pro pagato r and the Hi lbert
space is chosen as the Fock space of the free electro n Ùeld. In thi s case Eq. (2.27)
n = c y ( i ) c( i ) , whi ch expresses the chemical potenti al in term s of the parti cle
num ber and tem perature, is compl etely su£ cient to determ ine the representati on
of the Green functi on. In the presence of strong electronic correl ati ons the ordi nary
perturba ti on theo ry com pl etely fai ls and other techni ques m ust be developed. One
fram ework of calcula ti ons is based on the use of higher-order (co mposite) opera-
to rs as basis for developing perturba ti on schemes. Thi s approach is very conveni ent
because some am ount of the intera cti on is al ready conta ined in the chosen basis
and perm i ts to overcome the pro blem of Ùnding an appro pri ate expansion param -
eter. However, one pri ce m ust be paid. These com posite Ùelds are nei ther ferm ion
nor boson Ùelds; they sati sfy a noncanoni cal a lgebra and thei r properti es, because
of i ts inherent deÙniti on, must be self-consistentl y determ ined. For exam ple, the
composite operato r (2 .7) sati sÙesthe fol lowi ng algebra:

¿( ; t ) ; ¿ y ( ; t ) = £ 1 +
1

2
¥ ñ n ñ ( i ) ;
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f ² ( i ; t ) ; ² y ( j ; t ) g = À

1

2
£ii jj ¥ ñ n ñ ( i ) : (2 .30)

As a result, the propagato r h R [ ê ( i ) ê y ( j )] i depends on the param eters ñ; Â ; p

whi ch have to be determ ined. Several m etho ds (decoupl ing schemes, use of the
equati ons of moti on) have been consi dered in the l i tera ture in the context of di f-
ferent appro aches (Hubba rd I appro xi mati on, Roth 's m etho d, pro jection m etho d,
spectra l density appro ach). However, as shown in Ref. [19b] al l these procedures
lead to a series of unpl easant resul ts: several sum rul es and the parti cle{ho le sym -
m etry are vi olated, there is no Mo tt tra nsiti on, al l local quanti ti esstro ngly disagree
wi th the results of num erical sim ulatio ns. The reason is tha t in tho se appro aches
no attenti on is paid to the pro blem of Ùxing the representati on of the Green func-
ti on. W hen the algebra is noncanonical the self-consistent Eq. (2.27) whi ch Ùxes
the chemical potenti al is not su£ cient to com pletely determ ine the representa-
ti on. The other parameters Â ; p rem ain to be Ùxed. The param eter Â , deÙned by
(2.24), wi l l be determ ined by the self-consi stent Eq. (2.28). It is worthwhi le to re-
cal l tha t in the Hubba rd I approxi mati on thi s param eter is put equal to zero; thi s
pro cedure is compl etely inconsistent. The other parameter p , deÙned by (2.25), is
Ùxed by requi ri ng tha t the Paul i pri ncipl e

¿¥ ( i ) ² y

¥ ( i ) = c¥ ( i )[ n À ¥ ( i ) À n 2
À ¥ ( i )] c y

¥ ( i ) = 0 (2 .31)

be sati sÙed also at the level of m atri x elements

¿¥ ( i ) ² y

¥ ( i ) = 0 : (2 .32)

Stra ightf orw ard calculati ons show tha t Eq. (2.32) is system ati cal ly vi olated un-
less the three param eters are Ùxed by the set of coupl ed Eqs. (2.27){ (2 .29). W e
have shown [54] tha t thi s procedure of Ùxing the param eters ñ; Â ; p i s exact in
the case of a solvable m odel and gives very reasonabl e resul ts for the one- and
two -dim ensional Hubba rd m odel (see for exampl e: [19a, 55]). In parti cul ar, the
parti cl e{ho le sym m etry is conserved, al l the local quanti ti es are in good agreement
wi th the resul ts of num erical simulatio ns and wi th the Bethe- ansatz calculati ons.

In thi s arti cl e we wa nt to study the metal { insul ato r tra nsiti on in the case of
a three- di mensional system. Theref ore, we concentra te our attenti on to half -Ùll ing.
In thi s regim e the self-consistent Eqs. (2 .27){ (2 .29) give ñ = U =2 and Â = 0 , in
agreem ent wi th the general rel ati ons

ñ (2 n ) = U ñ (n ) ; Â (2 n ) = Â ( n ) (2 .33)

requi red by the parti cl e{hole sym metry . In order to calcul ate the value of the
parameter p at hal f-Ùll ing, let us deÙne

ñ 1 =
@ñ

@n
n =1

=
1

ç (1 )
; Â 1 =

@Â

@n
n =1

; (2 .34)

where ç ( n ) i s the com pressibi l it y ç ( n ) = ( @n= @ñ ) =n 2 . Then, from (2.27){ (2 .29) i t
is possible to deri ve [56] the fo llowi ng system of equati ons:
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4 ñ 1 K 1 + 1 6 d t [ K 1 À 2 d t (2 p À 1 ) K 2 ] Â 1 = (2 + U K 3 ) À 4 d t (2 p À 1 )U K 2 ;

2 U K 2 ñ 1 + 4 [ 1 + 2 d tU K 2 + 2 U d 2 t 2 (2 p À 1 )(2 K 4 À K 6 )] Â 1

= 2 K 7 + 4 d t (2 p À 1 )K 5 + d t (2 p À 1 )U 2 (2 K 4 À K 6 ) ;

2 (2 p À 1 ) K 2 ñ 1 + 2 [ K 3 + 4 d t (2 p À 1 ) K 2 + 4 d 2 t 2 (2 p 1 ) 2 (2 K 4 K 6 )] Â 1

= d t (2 p 1 )2 U (2 K 4 K 6 ) ; (2 .35)

where the quanti ti es K ( i = 1 ; 7 ), deÙned in App endix, are expressed onl y in
term s of p .

By solvi ng the system of self -consi stent Eqs. (2 .27){ (2 .29), the chemical po-
tenti al can be calcul ated as a functi on of the externa l parameters Ùll ing n , tem per-
ature T , and Co ulomb potenti al U . In thi s arti cle al l the energ ies are m easured in
uni ts of t , the tra nsfer integra l . Som e of the resul ts are shown in Fi g. 1, where ñ i s
pl otted versus the parti cle densi ty at T = 0 and several values of U . As expected,
ñ ta kes the value ñ = 6 t at n = 0 and increasesby increasing n . For large values
of U our resul ts show a di sconti nui ty of the chemical potenti al at hal f-Ùll ing, sig-
nal l ing the presence of a gap in the density of sta tes. To better study thi s aspect,
in Fi g. 2 we give the quanti ty ñ 1 = ( @ñ= @n ) =1 as a functi on of the intera cti on
streng th f or T = 0 : 0 0 0 1 and T = 1 . We see tha t at Ùnite tem perature ( @ñ= @n ) =1

increases by increasing U and tends to di verge in the l im it of U . At zero
tem perature ñ 1 diverges at a cri ti cal value of U : U 1:68W , where W = 1 2 t i s
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the band wi dth. At thi s value of U there is a phase tra nsi ti on from metal l ic to
insul ati ng state.

The density of sta tes (D OS) for the c -electro ns is given by the fol lowi ng
expression:

N ( ! ) =
¨

(2 ¤ ) 3

2X

˜ ;Ù =1

Z

¨ B

d 3 k

˚

À

1

¤

Ç

Im [ S ˜ Ù ( k ; ! )]

=
¨

(2 ¤ ) 3

2X

˜ ; Ù =1

2X

n =1

Z

¨

d3 k £ [ ! E n ( )] ¥
( n )

˜ Ù
( ) : (3 .1)

In Fi g. 3 the DOS is plotted as a functi on of the energy ! at zero tem perature,
ha l f-Ùll ing and several values of U . The Ùgure shows characteri sti c van Ho ve sin-
gul ari ti es correspondi ng to saddle points in the energy spectra E n ( ) . Contra ry to
the 2D case, the D OS have a plateau, i .e. m any- quasiparti cl e resonances, around
the Fermi level at smal l U . The same result has beenobta ined in R efs. [15] and [36].
Ho wever, the peak obta ined in these papers is rather large at smal l U . By increas-
ing U the centra l peak opens in two peaks: some of the centra l wei ght is tra nsferred
to the two peaks tha t correspond to the elementary exci ta ti ons described by the
Ùelds ¿ and ² . For smal l U the two bands overl ap and the system is in the m etal l ic
sta te. The overl appi ng region is given by

Â ! = E 1 ( ) E 2 ( ) = 2 4 tp + U 2 + [ 1 2 t (2 p 1 )] 2 ; (3 .2)

where = ( ¤ ; ¤ ). The weight in the D OS at the Fermi level remains constant for
smal l U ; starts to decrease at U 6 : 3 5 t and smoothl y goes to zero at U = U . Thi s
is shown in Fi g. 4, where N ( ñ ), the density of sta tes at the Ferm i level, is plotted
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versus U at hal f-Ùll ing and zero tem perature. Thi s behavi or is rem ark ably di ˜erent
from the 2D case, where the centra l peak at the Ferm i level abruptl y goes to zero
at U = U c . From Eq. (3.2) we see tha t U c i s determ ined by the self-consistent
equati on

U
c

= 1 2 t
p

4 p À 1 : (3 .3)

The self-consistent soluti on of thi s equati on gives the result previ ously reported
U c ¤ 1 : 6 8 W . Let us recal l tha t thi s is the sam e value obta ined in the 2D case
[57], where W = 8 t . Then, som e characteri stics of the 3D system can be obta ined
from the ones in the 2D system by scal ing the band wi dth. Let us noti ce tha t the
value U c = 4 W =3 has been obta ined in Ref. [37] and tha t the Mo nte Carl o resul t
on a 4 3 latti ce [30] demonstra tes tha t the gap at U = 2 W =3 al ready exi sts. For
U > U c the di stance between the two bands increasesl inearl y wi th U . Thi s is seen
in Fi g. 5 where the gap in the excita ti on spectrum is pl otted versus U for n = 1

and T = 0 .

Fig. 5. The gap in the excitation spectrum is plotted versus for and .

Fig. 6. The cross term in the total electronic density of states is plotted as a

function of the energy for half -Ùlli ng , zero temp erature and di˜erent values of .

Our resul ts for the density of states show tha t also f or U > U , where the
two subba nds are separated, both Ùelds ¿ and ² give contri buti ons to the two
bands. Al tho ugh, the lower subband is essentially made up by the contri buti on of
the \ ¿-electron" , there is always a contri buti on coming from the \ ² -electron" . The
vi ce versa is true for the upp er subband. Thi s is shown in Fi g. 6 where the cro ss
term 2 N (! ) , appeari ng in the tota l density of sta tes, is given as a functi on of
the energy ! at zero tem perature, hal f-Ùll ing and several va lues of U . W esee tha t
thi s term is di ˜erent from zero also in the insul ati ng phase (i .e. for U > U ). Onl y
in the l im it U the two Ùelds do not intera ct. Thi s result indi cates tha t in the
insul ati ng phase the ground state of the system has som e characteri sti c features.
At hal f-Ùll ing the doubl e occupancy D = n n =

2
² ( i ) ² ( i ) i s given by [56]:
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D =
1

4

˚

1 À

1

2
U K 3

Ç

; (3 .4)

where K 3 i s the quanti t y deÙned in Eq. (A. 1). It is easy to see tha t in the l im it
U ƒ t the doubl e occupancy decreases as t 2 =U 2 and vanishes only for inÙnite U .
For any Ùnite value of U there is always a smal l f racti on of empty sites. Easy
calculati ons and use of (A. 10){ (A. 11) show tha t at zero tem perature we have

l im
U ƒ t

D = d
t 2

U 2
+ O

˚
t 4

U 4

Ç

: (3 .5)

It is interesti ng to note tha t f or large U the double occupancy scales as the dim en-
sion d of the system .

These results show tha t in the insul ati ng phase the ground state has a struc-
ture di ˜erent from the simpl eone where al l sites are sing ly occupied; the com peti -
ti on between the i ti nerant and the local term s leads to a ground state characteri zed
by a smal l fracti on of empty and doubl y occupied sites. Som e questi ons ari se:

(i ) wha t is the structure of the ground state, and in parti cul ar there exists
any order ?

(i i ) if an ordered state is establ ished, can we indi vi duate an order parameter
describing the tra nsi ti on at U c?

For better understa ndi ng the structure of the ground state, we shall study the
m atri x element h c ¥ ( j ) c y

¥ ( i ) i . Thi s quanti ty represents the pro babi l it y am pl i tude
tha t an electro n of spi n ¥ i s created at site i and an electron of spin ¥ i s destro yed
at site j . Ho wever, thi s quanti ty gives only a l im ited inf orm atio n about the average
occupati on of the sites i and j ; there are four possible ways to real ize the tra nsi ti on
j ( ¥ ) i (¥ ) , and the quanti ty c ¥ ( j )c y

¥
( i ) cannot disti nguish am ong them . By

m eans of the decompositi on c ¥ ( i ) = ¿¥ ( i ) + ² ¥ ( i ) , the probabi l i t y am pl i tude is
wri tten as the sum of four contri buti ons

c¥ ( j ) c y

¥ ( i )

= ¿¥ ( j ) ¿y

¥
( i ) + ¿¥ ( j ) ² y

¥
( i ) + ² ¥ ( j ) ¿y

¥
( i ) + ² ¥ ( j ) ² y

¥
( i ) ; (3 .6)

whi ch correspond to di ˜erent tra nsiti ons (see Ref. [57]). A study of the probabi l i ty
am pl i tudes ê ( j ) ê y ( i ) wi l l give detai led inform ati on about the structure of the
ground state. W e have com puted these am pl i tudes for the speciÙc case of hal f-
-Ùll ing and by consideri ng tra nsi ti ons up to the thi rd nearest neighbors.

In Fi g. 7 the am pl i tudes A ˜ = ¿ ˜ ( i ) ¿y ( i ) = ² ˜ ( i ) ² y ( i ) and B ˜ =

² ˜ ( i ) ¿ y ( i ) = ¿˜ ( i ) ² y ( i ) are plotted versus U at half -Ùll ing and zero tem per-
ature. The Ùrst am pl i tude vanishes at U = U and rem ains zero for a ll values of
U > U , restri cti ng the m obi l it y of the electrons. The second quanti t y does not sat-
isfy thi s property; owi ng to thi s contri buti on, we have tha t for U > U the hoppi ng
of electrons from site i to the nearest neighb or is not forbi dden, al tho ugh restri cted
by the fact tha t A ˜ = 0 . The pro babi li ty am pl i tudes of hoppi ng to the second and
thi rd nearest neighbors have been also calcul ated. The picture emerging f rom thi s



518 F. Manci ni , V. Tur kowski

Fig. 7. T he Ùrst nearest- neighb ori ng hopping amplitud es A ˜ = h ¿˜ ( i ) ¿ y ( i ) i and

B ˜ ¿ i ² y i are plotted versus the potential strength U for half -Ùlling and zero

temp erature.

study conÙrms the one found [57] for the 2D Hubba rd m odel . The ground state
in the insulati ng pha se is characteri zed by a local anti ferrom agneti c order. D ue to
the fact tha t there are empty and doubl y occupi ed sites, the electrons have some
m obi l it y, but there are strong constra ints on thi s mobi li t y, such tha t the local an-
ti ferrom agneti c order is not destroyed. The m atri x elements and

m ight be considered as the quanti ti es whi ch contro l the order in
the insul ati ng state.

The three- dim ensional Hubba rd m odel has been studi ed by means of the
composite operato r metho d. By considering as basic set of Ùeld operato rs the
Hubba rd operators and , whi ch describe sing ly and doubl y occupi ed latti ce
sites, respecti vely, the sing le-parti cle Green functi on has been computed by using
the equati ons of m oti on in the polar appro xi mati on. The paper is dedicated to
the study of the Mo tt{ Hubba rd tra nsiti on, theref ore, the special case of hal f-Ùll ing
and zero tem perature has been considered. Once the self -consistent equati ons have
been solved for the param agneti c case, the density of states has been computed for
a large range of values. Ana lyti cal calcul ati ons show the existence of a cri ti cal
value , deÙned by a self-consistent equati on and mainly contro l led by intersi te
correl ati ons, whi ch separates the meta l lic and insulati ng phases. For a gap
opens and the densi ty of sta tes spli ts into two separated structures . An interesti ng
resul t is obta ined when we separatel y calculate the contri buti on of the Ùelds and

to the global density of sta tes. Our calcul ati ons show tha t even for ,
where the lower and upper bands are well separated, the two contri buti ons com ing
from and do not separate. The ground state in the insulati ng phase conta ins
always a smal l fracti on of empty and doubl y occupied sites.

Thi s resul t is conÙrm ed by the calcula ti on of the matri x element ,
whi ch gives the pro babi li ty am pl i tude of hoppi ng from the site to the site . W e
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Ùnd tha t when j i s an odd nearest neighbori ng site of i , thi s quanti t y is not zero
for U > U c and vanishesonl y for inÙnite U . Ho wever, when we spli t c = ¿ + ² and
analyze h c ¥ ( j odd )c y

¥ ( i ) i in components, we Ùnd tha t for U > U c onl y the matri x
elements h ¿¥ ( j odd ) ² y

¥ ( i ) i and h ² ¥ ( j odd ) ¿ y

¥ ( i ) survi ve. The probabi l i ty am pl i tudes
¿¥ ( j ) ¿ y

¥ ( i ) and ² ¥ ( j ) ² y

¥ ( i ) vanish at U = U and remain zero for al l
U > U . On the other hand, the matri x element c¥ ( j ) c y

¥ ( i ) i s always zero
for any value of U ; the two contri buti ons ¿¥ ( j )¿ y

¥ ( i ) and ² ¥ ( j ) ² y

¥ ( i )

compensati ng each other.
Sum mari zing, our calcul ati ons suggest tha t the ground state of the Mo tt

insul ato r has the fol lowi ng characteri stics:

(i ) a smal l fracti on of sites are empty or doubl y occupied; the numb er of these
sites depend on the value of U =t and tends to zero onl y in the l imit U ;

(i i ) a local anti f erromagneti c order is establ ished;

(i i i ) the electro ns keep some m obi li t y, but thi s m obi l it y m ust be com pati ble wi th
the local anti ferro magneti c order;

(iv) the m atri x elements ¿¥ ( j )¿ y

¥ ( i ) and ² ¥ ( j ) ² y

¥ ( i ) m ight be considered
as the quanti ties whi ch contro l the order in the insulati ng phase.

V. T . wi shes to tha nk the memb ers of the D iparti mento di Fi sica \ E. R. Ca-
iani ello" , Uni versi t å degl i Studi di Salerno, Ita ly, especial ly Prof. F. Ma nci ni for
thei r ki nd hospi ta li ty . The autho rs wi sh to tha nk Dr. Ado l fo Avel la f or the many
useful discussions and his careful readi ng of the manuscript.

The quanti ti es K i ( i = 1 ; 7 ) , intro duced in Sec. 2, are deÙned as

K
1

8 k T

¨

(2 ¤ ) d
¨

d d k [ t ( ) + t ( ) 2 ] ;

K
1

8 k T

¨

(2 ¤ ) d
¨

d d k ˜ ( )
t ( ) t ( )

Q ( )
;

K
¨

2 (2 ¤ )d
¨

d d k
t ( ) t ( )

Q ( )
;

K
1

8 k T

¨

(2 ¤ ) d
¨

d d k ˜ ( )
2 t ( ) t ( )

Q ( )
;

K
¨

2 (2 ¤ )d
¨

d d k ˜ ( )
t ( ) t ( )

Q ( )
; (A. 1)
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K 6 ²

¨

2 (2 ¤ )d

Z

¨ B

d d k ˜ 2 ( k )
t 1 0 ( k) À t 2 0 ( k)

Q 3
0

(k )
;

K 7 ²

¨

2 (2 ¤ )d

Z

¨

d d k ˜ ( )[ t 1 0 ( ) + t 2 0 ( )] ; (A. 2)

where

t 1 0 ( ) = ta nh
E

(0 )
1 ( )

2 k T
; t 2 0 ( ) = ta nh

E
(0 )
2 ( )

2 k T
;

E
(0 )
1 ( ) = R 0 ( ) + Q 0 ( ) ; E

(0 )
2 ( ) = R 0 ( ) Q 0 ( ) ;

R 0 ( ) = 4 d tp˜ ( ) ; Q 0 ( ) =
U 2

4
+ 4 d 2 t 2 (2 p 1 ) 2 ˜ 2 ( ) : (A. 3)

W hen the hoppi ng t i s restri cted to Ùrst nearest neighb ors, al l integ rati ons
in m omentum space can be reduced to one-dim ensional integ rati on. Let us consider
the integ ra l

¨

(2 ¤ ) d
¨

dd k F [ ˜ ( )] ; (A. 4)

where F [ ˜ ( )] i s a generic functi on of ˜ ( ) , deÙned by (2.6). It is stra ightf orward
to derive the fol lowing form ula:

¨

(2 ¤ ) d
¨

dd k F [ ˜ ( )] =

1

1

dx F [ x ] w ( x ) ; (A. 5)

where

w ( x ) =
a d

(2 ¤ ) d
¨

dd k £[ x ˜ ( )] : (A. 6)

The expression of the functi on w (x ) depends on the spati a l dim ension. Stra ight-
forwa rd calcul ati ons give the fol lowing results:

one dim ension

w ( x ) =
1

¤

1

1 x 2
; (A. 7)

two dim ensions

w ( x ) =
2

¤ 2
K ( 1 x 2 ) ; (A. 8)

three dim ensions [58]

w ( x ) =
2 4

(2 ¤ ) 3

1

3 x 2

dy

1 y 2
K

3 x y

2
È x

1

3

+
2 4

(2 ¤ ) 3

1

1

dy

1 y 2
K

3 x y

2
È

1

3
x ; (A. 9)

where K ( x ) i s the compl ete ell ipti c integra l of the Ùrst ki nd and K ( x ) = K ( 1 x 2 ) .
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W e note tha t the form ul a (A. 9) is val id for x Ñ 0 ; but i t is easy to see tha t
w ( À x ) = w ( x ) . It is possibl e to see tha t (A. 7){ (A. 9) sati sfy the relati ons

Z
1

À 1

dx w ( x ) = 1 ; (A. 10)

Z
1

À 1

dx x 2 w ( x ) =
1

2 d
; (A. 11)
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