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The Mott—Hubbard transition in the three-dimensional Hubbard model
is studied by means of the composite operator method. Analytical and nu-
merical calculations show the existence of a critical value U, of the Coulomb
interaction which separates paramagnetic insulating and metallic phases. In
the composite operator method the ratio U. /W, where W is the band width,
has the same value as in the two-dimensional case. The ground state of the
Mott insulator is characterized by a local antiferromagnetic order where the
electrons keep some mobility, but this latter must be compatible with the
local ordering. By analyzing the intersite hopping it is possible to establish
that some correlation functions behave as order parameters in the insulating
phase.

PACS numbers: 71.10.—w, 71.10.Fd, 71.30.+h

1. Introduction

The study of strongly correlated electron systems has a long history. Proba-
bly, the beginning of these studies can be traced back to a conference on electrical
conduction mechanisms, held in Bristol in 1937 [1], where de Boer and Verwey
presented [2] conductivity data for some transition metal oxides. Almost all mate-
rials demonstrated insulating behavior at room temperatures. However, according
to Bloch theory they should be metals, because a simple account of the number
of 3d electrons gives a partially filled 3d bands. The authors proposed that the
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Coulomb repulsion between 3d electrons might be responsible for barrier for tun-
nelling between neighbor sites. In the following discussion Peierls proposed that
the Coulomb repulsion leads to the particle localization: “it is quite possible that
the electrostatic interaction between electrons prevents them from moving at all”.
Therefore, the Bloch wave theory could not describe the behavior of the mate-
rials and it was necessary to find another proper model. Then, beginning from
1949, Mott in a series of works [3] summarized the ideas proposed and suggested
a new vision of the problem, which is known now as the problem of the Mott
insulator. He estimated that the insulating gap in the electron spectra is of the
order of the Coulomb repulsion integral on the same site. Therefore, it became
more evident that the strong electron correlations are crucial in these phenomena.
Beginning from that time the theoretical physicists started to model and investi-
gate the behavior of strongly correlated electronic systems. The simplest effective
model which takes into account these correlations is the Hubbard model (HM)
[4]. Tts Hamiltonian consists of a kinetic term, describing the inter-site hopping of
electrons, and a potential term describing the intra-site Coulomb repulsion. In the
early years the Hubbard model investigations were devoted mainly to the study
of the Mott transition in vanadium and titanium oxides (the results for V403
are summarized in [5]). From the first works there has been an extensive study
of this model (for overview see, for example, Refs. [6] and [7]). However, after
more than thirty years a real full understanding of its properties is still lacking.
The model has two exact solvable limits, U = 0, when the Coulomb interaction is
absent, and ¢ = 0, the atomic limit, when the inter-site hopping is absent. Unfor-
tunately, the solution in the intermediate case of finite ¢ and U is still lacking. In
the one-dimensional (1D) case the Hubbard model is exactly integrable by means
of the Bethe ansatz (BA) [8] and the ground state wave function is known [9]. In
this way many properties are known exactly within the numerics needed in the
case of arbitrary particle density and finite temperature. However, the BA does
not provide a complete framework for describing the physics of the 1D Hubbard
model since many properties, like the correlation and spectral functions, cannot
be evaluated from the BA wave function except for some limiting cases.

Despite the absence of really satisfactory treatments, the Hubbard model 1s
one of the most important models of the condensed matter physics today. The
model can describe not only a metal-insulator transition [4, 10, 11], but also anti-
ferromagnetism [12], ferromagnetism [13], superconductivity [14], and many other
phenomena.

The Hubbard model investigations have received a new impulse after the
discovery of high-temperature superconductors (HTSC). Superconducting oxides,
such as Las_;Sr,CuQOy4, Nda_,Ce,Cu0y4, YBasCuzOr_, and BisSr2CaCusOgys,
have a layered structure of hole dynamics and in the underdoped regime are in
an antiferromagnetic insulating state. Due to this, studies concerning HTSC have
been carried out mainly in two-dimensional models. Many approaches have been
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proposed to study the 2D Hubbard model. Among them we cite the slave boson
method [15], the dn, method [16, 17], the projection operator method [18], the
composite operator method (COM) [19a—-19d]. There are many evidences now that
this model can describe some of the HTSC properties. For example, it was shown
[20] by using the COM that this model can qualitatively describe the behavior of
several properties of cuprate compounds in the normal state.

Relatively not much attention has been paid to the study of the three-dimen-
sional (3D) Hubbard model in the last years. However, there are several reasons
for study such a model. First, there are some oxides with 3D strong electronic
correlation structure, for example YTi1O3, SrVOs, Y;_.Ca,;TiO3z, Sr;_;La,;TiO3
and LasCuO44s, which have been experimentally investigated in the last years
(see, for instance, [21-29] and for an overview [7]). The possibility of describing
photoemission results for YTiO3 and some other materials [21-23] has been also
considered. In some perovskite oxide with 3d! configuration (Ti3*, for example)
the hopping amplitude ¢ can be changed by varying d—d neighboring overlaps due
to a tetragonal distortion. This means that the changing of composition leads to
varying the ratio U/t. The Mott transition has been observed in the series SrVOs,
CaVOs, LaTiOs, YTiOs. At small U/t and half-filling, near Fr a quasiparticle and
a high-energy band, the latter corresponding to the lower Hubbard band (LHB),
were observed. Then, the spectral weight is redistributed from the quasiparticle
band to the LHB by increasing U/t (see [17, 21, 30]). Also, the metal-insulator
transition driven by the band filling changing due to varying the chemical compo-
sition has been observed [23, 26, 31]. Thus, Y;_,Ca,;TiOs passes from the anti-
ferromagnetic insulating to metallic state as = increases. Two Hubbard subbands
are visible in a wide range of #. (The theoretical description of this phenomena
has been performed in [32] (see also [17, 33]) and [30] in the D = oo and D =3
Hubbard model.)

Second, the study of the 3D Hubbard model may be useful for understanding
the physics of the HT'SC which are layered strongly correlated materials, i.e. they
exhibit a behavior intermediate between 2D and 3D structure.

Let us mention some of the works devoted to the 3D Hubbard model which
have appeared during the last 10-15 years. Spectral properties of the model were
studied in [30] by using the Monte Carlo method, and in [34] and [35], in the
weak-interaction limit, by using the U-expansion. One-electron energy was cal-
culated in [36] by using an atomic basis with Wannier functions. Recently, the
possibility of the Mott transition in the 3D Hubbard model was studied in [37] as
a limiting case of the many-plane HM. The spectral and magnetic properties of the
model were studied in [38] by using the fluctuation-exchange and the two-particle
self-consistent approximation in the weak-coupling regime. Magnetic properties of
the model were studied numerically in [39-41] and in [42, 43] along with thermo-
dynamic ones in order to investigate the possibility of Néel transition. The authors
of the papers [44, 45] mapped spin excitations on those of the effective underlying
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Heisenberg model to find the antiferromagnetic critical Néel temperature and to
describe the magnetism in the 3D Hubbard model. The magnetic phase diagram
was studied at second order in [46]. Magnetic properties in the 3D Hubbard model
at half-filling were also studied in [47] by using the linked-cluster series expansion
method. In a series of papers [48-51] the magnetic and thermodynamical proper-
ties of the model were studied by using the Gutzwiller variational approach and
the single-site spin fluctuation theory. The ground state energy was calculated an-
alytically in [52] at small U at second order. The phase diagram of the 3D Hubbard
model was studied in [53].

In this article we consider the paramagnetic solution of the three-dimensional
Hubbard model by means of the composite operator method [19a—19d]. The moti-
vation is to study the Mott—Hubbard transition and the nature of the ground state;
therefore, we concentrate the analysis to half-filling and to zero temperature. By
studying the chemical potential and the density of states we find that there exists
a critical value U, of the Coulomb potential which separates a paramagnetic metal
for U < U. and a Mott—Hubbard insulator for U > U.. This critical potential 1s
determined by a self-consistent equation and is mainly controlled by the intersite
fluctuations. We can show that at zero temperature the double occupancy remains
finite in the insulating phase and tends asymptotically to zero as U — oo. The
result that in the insulating phase there exists a small fraction of doubly occupied
and empty sites is also confirmed by our study of the density of states. By decom-
posing the electron operator as ¢ = & + 1, where £ and 5 are the usual Hubbard
operators describing the transitions (n = 0) < (n = 1) and (n = 1) & (n = 2),
respectively, we have studied the contribution of ¢ and 7 to the density of states.
As many analytical and numerical results also show, in the insulating phase the
electron density of states is split into two bands, the lower and upper Hubbard
bands, but there is always a contribution of & (1) to the upper (lower) band. Fur-
thermore, the cross term (€n') contributes to the density of states in a significant
way around the Fermi level, even for large values of U.

These results open questions about the nature of the ground state and the
identification of an order parameter. To answer these questions we have studied
the quantity (c(i)ef(j)), which gives the probability amplitude of hopping from
site ¢ to site j. By means of the decomposition ¢ = & + i we are able to study how
the latter quantity depends on the average occupation of the sites ¢ and j. We
have investigated up to the third nearest neighbors, but the analysis can be easily
extended to any distance, by symmetry considerations. The picture that emerges
by this study is that an antiferromagnetic order is established in the insulating
phase, but the situation is not the one as in the Heisenberg antiferromagnet where
all electrons are frozen on the sites. The ground state 1s characterized by a small
fraction, depending on the value of U, of empty and doubly occupied sites; the
electrons can hop among sites, but there are strong constraints on their mobil-
ity such that the antiferromagnetic local order is not destroyed. The probability
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amplitudes (€(i)¢T(joaa)) and (n(i)nf(joaa)), where joaq is an odd nearest neigh-
boring site of ¢, vanish at /' = U, and remain zero for all U > U, putting a
constraint on the electron mobility. We might take these quantities as the ones
that characterize the order in the insulating phase. This picture is consistent with
the fact that there is a competition between the itinerant and localizing energy
terms; for any finite value of ¢ there is always a small contribution coming from
kinetic energy which allows the hopping among sites. However, at a certain value
of U a local magnetic order is established and the hopping is severely restricted.
Only in the limit of infinite U the electron mobility is totally forbidden and the
system becomes a Heisenberg antiferromagnet.

In Sec. 2, by means of the technique of the equations of motion, we derive
the explicit expression for the retarded Green function (GF) in the two-pole ap-
proximation. The GF depends on some parameters that must be self-consistently
calculated. By requiring that the representation of the GF satisfies symmetry
constraints, a set of self-consistent equations i1s derived. By solving these equa-
tions in Sec. 3 we study the problem of the Mott transition. The existence of
metal-insulator transition is investigated by looking at the chemical potential, the
density of states and the probability amplitudes {(¢(i)eT(j)). Some conclusions are
drawn in Sec. 4. Details of calculations are reported in Appendix.

2. Formulation

The Hubbard model is described by the following Hamiltonian:
H=H,+ Hy. (2.1)

H, is the kinetic term which describes the motion of the electrons among the sites
of a Bravais lattice spanned by the vectors

He = (tij — pdij)el (D)e(j). (22)
15
¢(7), ¢'(i) are annihilation and creation operators of electrons at site i = (%,¢) in
the spinor notation

c:<cT), = (c o) (2.3)

€l
and satisfy canonical anticommutation relations

{ca(i’t)’ CL'(j’t)} = 60,0’6"]"
{ca(i’t)’ CU’(jat)} = {cl(i’t)’ CL,(j,t)} =0, (2'4)

ft 1s the chemical potential, ¢;; denotes the transfer integral between different sites.
We fix the scale of energy in such a way that ¢;; = 0. In addition to the band energy
the model contains an interaction term which approximates the correlation among
the electrons. In the simplest form the interaction is between electrons of opposite
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spin on the same lattice site; the strength of the interaction is described by the
parameter U:

Hy = UZnT(i)nl(i), (2.5)

where n, (i) = ¢l (i)e, (i) is the number operator for the electrons with spin o. In
the nearest-neighbor approximation the hopping matrix for a d-dimensional hyper
cubic lattice with lattice constant a takes the form t;; = —2dta;;, where ay; is
the projector on the nearest neighbor sites

;= % Zk:eik(i_j)a(k), a(k) = %T; cos(kna), (2.6)
N 1s the number of the sites and the summation runs over the first Brillouin zone.

A convenient basis to study this model is given by the composite field

(%)
where £(%) and 5(¢) are the Hubbard fields
(i) = [L=n(i)]e(d), (i) = n(i)e(i). (2.8)

The field £(¢) is responsible for the transitions |0) < |o), while 7(%) takes care of the
transitions |o) < | T]). |0) denotes the state with no c-particles. n(i) = ¢f(i)ec(7)
is the total number operator. The Heisenberg field (2.7) satisfies the equation of
motion

ot

where #(i) is a higher-order composite field defined as

O () — 2dt[e () + 7(6)]
g0 =00 = (0 ) =

7(i) = %U“nu(i)ca(i) + c(i)caT(i)c(i). (2.10)

We have introduced the charge (1 = 0) and spin (¢ = 1,2,3) density operator
nu(i) = c'(i)o,c(i). o, are the Pauli matrices, with the notation o, = (1,0) and
ot = (—1,0). For any operator @, the notation $*(¢) stands for

(i) = Z a; @) (2.11)

In order to solve the Heisenberg equation (2.9) we project the source J(i) on the

basic field
J(i) =Y i) ()- (2.12)

J
In the weak sense the matrix £(%,7) is determined by the following equation:

(L0 0, 0100} =D (i) H{e, 0,01 (1 6)}). (2.13)

J
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The notation {- - -} stands for the quantum statistical average in the grand canonical
ensemble.
Let us consider the thermal retarded Green function

S(i, ) = (R[Y(DT(7)]) = 00t — ;) ({0 (), 1 (). (2.14)
By means of (2.12) the Fourier transform of S(i, j) satisfies the equation
[w—e(k)]S(k,w) = I(k), (2.15)

where (k) is the Fourier transform of the energy matrix (¢, j) and I(k) is the
normalization matrix

I(k) = FTA{G, 1), 1, 0)}). (2.16)
The symbol F.T. denotes the Fourier transform. The solution of (2.15) is given by

2

ey
S(h,w) =" T((k';)ﬂs (2.17)

n:l
where B, (k) are the eigenvalues of the matrix ¢(k) and the spectral functions
o™ (k) can be calculated by means of the equation

am( Z 271 (k) Ly ( (2.18)

where £2(k) is the 2 x 2 matrix whose columns are the eigenvectors of the ma-
trix ¢(k). By considering a paramagnetic homogeneous state, straightforward cal-
culations give the following results. The energy spectra E,(k) and the spectral
functions are given by

E1(k) = R(W + QUR),  Ba(k) = R(E) — Q(b) (2.19)
AV =1t |14 B el =B [ A5
A = GEE o = e,
AV = [1- g ] =2 |1+ ). (2200
where
R(k) = —p — 2dta(k) + %U - ;ﬁg’;z Qk) = %%Z(k) + 42%25) (2:21)
g0 = <0+ T Sma(k), mia(h) = 2t A+ a(B)p - B2l (2:22)

I.5(k) are the elements of the normalization matrix

i 0 1 1
I(k) = ( (1)1 122), hi=1-gn, Dp=gn (2.23)
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n = (c1(i)e(7)) is the average particle number per site. The parameters A and p de-
scribe a constant shift of the bands and a band width renormalization, respectively.
They are static intersite correlation functions defined as

A= (€ (DETE) — (D' (), (2.24)

p= 1 @) — ey(Dey (D17 ()] () (2.25)

The correlation function C(7,7) = (¥(i)¥T(j)) can be calculated from (2.17) by
means of the spectral theorem and has the expression

Cd) = oy 2 /n Atk ==, ()t — 1)1 — FLEL(B)]) o™ (k). (2.26)

2 and {2 are the volumes of the unit cell in the direct and reciprocal lattices,
respectively. f[F, (k)] = [eﬁE"(k) + 1]~ is the Fermi distribution function. The
Green function S(%, j) and the correlation function C(4, j) depend on the internal
parameters p, A, p, which must be self-consistently determined. In the framework
of the COM these parameters are fixed by the following set of coupled equations:

n = 2(1 - 011 - 022), (227)
A=CY — C%, (2.28)
Ci2 =0, (2.29)

where we use the notation C'= (¥(i)yT(2)), C% = (L*()w1(3)).

As well known, the equations of motion are not sufficient to determine the
Green function. Generally speaking, this quantity is defined as the quantum sta-
tistical average of some operators on a given vectorial space. The Hilbert space,
where the operators act, must be defined. In the ordinary perturbation theory
the Green function is expressed in terms of the free propagator and the Hilbert
space is chosen as the Fock space of the free electron field. In this case Eq. (2.27)
n = {cf(é)e(i)), which expresses the chemical potential in terms of the particle
number and temperature, is completely sufficient to determine the representation
of the Green function. In the presence of strong electronic correlations the ordinary
perturbation theory completely fails and other techniques must be developed. One
framework of calculations is based on the use of higher-order (composite) opera-
tors as basis for developing perturbation schemes. This approach is very convenient
because some amount of the interaction 1s already contained in the chosen basis
and permits to overcome the problem of finding an appropriate expansion param-
eter. However, one price must be paid. These composite fields are neither fermion
nor boson fields; they satisfy a noncanonical algebra and their properties, because
of its inherent definition, must be self-consistently determined. For example, the
composite operator (2.7) satisfies the following algebra:

(600, 0.€1G.0} = 85 [ 1+ J#nati)].
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1060, 71G 0} = =5 8550m (). (2:30)

As a result, the propagator (R[¢(i)¥1(j)]) depends on the parameters p, A, p
which have to be determined. Several methods (decoupling schemes, use of the
equations of motion) have been considered in the literature in the context of dif-
ferent approaches (Hubbard I approximation, Roth’s method, projection method,
spectral density approach). However, as shown in Ref. [19b] all these procedures
lead to a series of unpleasant results: several sum rules and the particle-hole sym-
metry are violated, there is no Mott transition, all local quantities strongly disagree
with the results of numerical simulations. The reason is that in those approaches
no attention is paid to the problem of fixing the representation of the Green func-
tion. When the algebra is noncanonical the self-consistent Eq. (2.27) which fixes
the chemical potential is not sufficient to completely determine the representa-
tion. The other parameters A, p remain to be fixed. The parameter A, defined by
(2.24), will be determined by the self-consistent Eq. (2.28). Tt is worthwhile to re-
call that in the Hubbard I approximation this parameter is put equal to zero; this
procedure is completely inconsistent. The other parameter p, defined by (2.25), is
fixed by requiring that the Pauli principle

E (D)0 (8) = eo(D)ns (i) — nZ ,(D)]c] (i) = 0 (2.31)
be satisfied also at the level of matrix elements
(€ (Dnk (D) = 0. (2.32)

Straightforward calculations show that Eq. (2.32) is systematically violated un-
less the three parameters are fixed by the set of coupled Eqs. (2.27)—(2.29). We
have shown [54] that this procedure of fixing the parameters u, A, p is exact in
the case of a solvable model and gives very reasonable results for the one- and
two-dimensional Hubbard model (see for example: [19a, 55]). In particular, the
particle-hole symmetry is conserved, all the local quantities are in good agreement
with the results of numerical simulations and with the Bethe-ansatz calculations.

In this article we want to study the metal-insulator transition in the case of
a three-dimensional system. Therefore, we concentrate our attention to half-filling.
In this regime the self-consistent Eqs. (2.27)-(2.29) give g = U/2 and A = 0, in
agreement with the general relations

2 —n)=U—pu(n), A2-n)=-An) (2.33)

required by the particle-hole symmetry. In order to calculate the value of the
parameter p at half-filling, let us define

[ ou 1 _ (oA
= (a_n)nzl B m’ Al B <an )nzl ’ (234)

where x(n) is the compressibility x(n) = (0n/0p)/n?. Then, from (2.27)—(2.29) it
is possible to derive [56] the following system of equations:
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A Ky + 16dt[Ky — 2dt(2p — 1)Ko] Ay = (24 UKs) — 4dt(2p — 1)U K,
2 Koy + A[1 + 2dtU Ko + 2Ud%2(2p — 1)(2K4 — Ke)] A
= 2K7 + 4dt(2p — 1) K5 + dt(2p — 1)U(2K4 — Ke),
2(2p — 1) Kopy + 2[Ks + 4dt(2p — 1)K + 4d%2(2p — 1)%(2K4 — K¢)] A
= di(2p — 1)2U(2K4 — Kg), (2.35)

where the quantities K; (i = 1,7), defined in Appendix, are expressed only in
terms of p.

3. The Mott—Hubbard transition

By solving the system of self-consistent Eqs. (2.27)-(2.29), the chemical po-
tential can be calculated as a function of the external parameters filling n, temper-
ature 7', and Coulomb potential U. In this article all the energies are measured in
units of ¢, the transfer integral. Some of the results are shown in Fig. 1, where p is
plotted versus the particle density at 7" = 0 and several values of U. As expected,
i takes the value p = —6¢ at n = 0 and increases by increasing n. For large values
of U our results show a discontinuity of the chemical potential at half-filling, sig-
nalling the presence of a gap in the density of states. To better study this aspect,
in Fig. 2 we give the quantity g3 = —(9u/dn)n=1 as a function of the interaction
strength for 7'= 0.0001 and 7' = 1. We see that at finite temperature (9p/0n)n=1
increases by increasing U and tends to diverge in the limit of U — oo. At zero
temperature pq diverges at a critical value of U: U. &= 1.68W, where W = 12¢ is

0 1 awan 1
H o u=0 | T=0 1 wdn

30 A -100 | ]
20 H 200 .

10 T 4 300f ]

I R, .
B K‘ e b ] _ B o

10, 0.5 1 15 2 5005 0
Fig. 1 Fig. 2

Fig. 1. The chemical potential is plotted as a function of the particle density at zero
temperature and several values of U.

Fig. 2. The parameter g3 = —(dp/dn)n=1 is plotted as a function of the potential
strength U/t for T = 0.0001 and T = 1.
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the band width. At this value of U there is a phase transition from metallic to
insulating state.

The density of states (DOS) for the c-electrons is given by the following
expression:

V@) = ; [k (=3 ) s o)

0 2 2 , -
= — k k). .

@y a%;“;/%d kolw — En(k)]oyy (k) (3.1)

In Fig. 3 the DOS is plotted as a function of the energy w at zero temperature,

half-filling and several values of U. The figure shows characteristic van Hove sin-

gularities corresponding to saddle points in the energy spectra F, (k). Contrary to

the 2D case, the DOS have a plateau, i.e. many-quasiparticle resonances, around

the Fermi level at small U. The same result has been obtained in Refs. [15] and [36].

However, the peak obtained in these papers is rather large at small U. By increas-

ing U the central peak opens in two peaks: some of the central weight is transferred

to the two peaks that correspond to the elementary excitations described by the

fields € and 5. For small U the two bands overlap and the system is in the metallic
state. The overlapping region is given by

Aw = F1(0) — Bo(Q) = —24tp + /U2 +[12t(2p — 1)]2, (3.2)

where @ = (7, m). The weight in the DOS at the Fermi level remains constant for
small U; starts to decrease at U =~ 6.35¢ and smoothly goes to zero at U = U.. This
is shown in Fig. 4, where N(p), the density of states at the Fermi level, is plotted

0.15 ] 0.15
N(w) f U=0 v 1 N | T=0
R
u U=10 oL i r
----- v=20] ) . s
AL Iy } :\ 7 0.1} \
[ | ] L \
T=0 e ] :
C n=1 } \ r N
0.05F SRR . 0.05 |- \ 3
N [ N ] C
L SRt oo T ] F
SRS N SR t SO
():V.T}l'f.)_;f,'yi"'f\"\/ RTINS ob i \\
-30 -20  -10 20 (1)30 0 5 10 15 20 U 25
Fig. 3 Fig. 4

Fig. 3. The electronic density of states is plotted as a function of the energy for
half-filling, zero temperature and different values of U.
Fig. 4. The electronic density of states at the Fermi value is given against the potential

strength for half-filling.
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versus U at half-filling and zero temperature. This behavior is remarkably different
from the 2D case, where the central peak at the Fermi level abruptly goes to zero
at U = U.. From Eq. (3.2) we see that U, is determined by the self-consistent

equation

U .=12t\/4p— 1. (3.3)
The self-consistent solution of this equation gives the result previously reported
U. ~ 1.68W. Let us recall that this is the same value obtained in the 2D case
[57], where W = 8t. Then, some characteristics of the 3D system can be obtained
from the ones in the 2D system by scaling the band width. Let us notice that the
value U. = 4W/3 has been obtained in Ref. [37] and that the Monte Carlo result
on a 4% lattice [30] demonstrates that the gap at U = 2W/3 already exists. For
U > U, the distance between the two bands increases linearly with UU. This is seen
in Fig. 5 where the gap in the excitation spectrum is plotted versus U for n = 1

and T'=0.

30 | . 0.05
A b T=0 J NEn) ]
- 4 § U=4 1
25 o=l 1004 [ U=10 ]
¥ 1 r U=20 1
20 4 fl----- U=30 .
r 1 003 F 1 ]
] r n=
15 | 3 L T 7
; 1 002 ]
10 . g ]
s b 4 oo p \ / - 3
o b A L] 0:"H\"H‘;M\/fftx‘"‘\.\\"ﬂ/u“’fi??ilu\mu‘7
0 10 20 30 40 USO 20 -15 -10 -5 0 5 10 15 @ 20
Fig. 5 Fig. 6

Fig. 5. The gap in the excitation spectrum is plotted versus U for n =1 and 1" = 0.
Fig. 6. The cross term 2N¢p(w) in the total electronic density of states is plotted as a

function of the energy for half-filling, zero temperature and different values of U.

Our results for the density of states show that also for U > U, where the
two subbands are separated, both fields ¢ and 75 give contributions to the two
bands. Although, the lower subband is essentially made up by the contribution of
the “€-electron”, there is always a contribution coming from the “n-electron”. The
vice versa is true for the upper subband. This is shown in Fig. 6 where the cross
term 2Ng,(w), appearing in the total density of states, is given as a function of
the energy w at zero temperature, half-filling and several values of /. We see that
this term is different from zero also in the insulating phase (i.e. for U > Uc). Only
in the limit ' — oo the two fields do not interact. This result indicates that in the
insulating phase the ground state of the system has some characteristic features.

At half-filling the double occupancy D = (nyn|) = % — (n(i)n'(i)) is given by [56]:
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1 |
D=7 (1 - 5UA?,) , (3.4)

where K3 is the quantity defined in Eq. (A.1). Tt is easy to see that in the limit
U >t the double occupancy decreases as $2/U? and vanishes only for infinite U.
For any finite value of U there is always a small fraction of empty sites. Easy
calculations and use of (A.10)—-(A.11) show that at zero temperature we have

. t? t

[ljlgltD_dm—i_O (m) . (3.5)
It is interesting to note that for large U the double occupancy scales as the dimen-
sion d of the system.

These results show that in the insulating phase the ground state has a struc-
ture different from the simple one where all sites are singly occupied; the competi-
tion between the itinerant and the local terms leads to a ground state characterized
by a small fraction of empty and doubly occupied sites. Some questions arise:

(i) what is the structure of the ground state, and in particular there exists
any order?

(ii) if an ordered state is established, can we individuate an order parameter
describing the transition at U.?

For better understanding the structure of the ground state, we shall study the
matrix element (c,(j)el(i)). This quantity represents the probability amplitude
that an electron of spin o is created at site ¢ and an electron of spin o is destroyed
at site j. However, this quantity gives only a limited information about the average
occupation of the sites ¢ and j; there are four possible ways to realize the transition
j(o) — i(o), and the quantity {c,(j)el (7)) cannot distinguish among them. By
means of the decomposition ¢,(7) = &,(¢) + 9,(¢), the probability amplitude is
written as the sum of four contributions

(s (7)el (1))

= (€ (NEL@)) + (o (DL (D) + (o (DEL @) + (ns (7)1 (1)), (3.6)
which correspond to different transitions (see Ref. [57]). A study of the probability
amplitudes (¥(5)¢1(d)) will give detailed information about the structure of the
ground state. We have computed these amplitudes for the specific case of half-
-filling and by considering transitions up to the third nearest neighbors.

In Fig. 7 the amplitudes A% = (€2()ET(E)) = (p*(i)nt(i)) and B* =
(n*(0)eT (7)) = (€2(i)nt(4)) are plotted versus U at half-filling and zero temper-
ature. The first amplitude vanishes at U/ = U, and remains zero for all values of
U > U., restricting the mobility of the electrons. The second quantity does not sat-
1sfy this property; owing to this contribution, we have that for U > U. the hopping
of electrons from site ¢ to the nearest neighbor is not forbidden, although restricted
by the fact that A% = 0. The probability amplitudes of hopping to the second and
third nearest neighbors have been also calculated. The picture emerging from this
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Fig. 7. The first nearest-neighboring hopping amplitudes A® = (£%(:)¢1(i)) and
B% = {¢%(1)n' (7)) are plotted versus the potential strength U for half-filling and zero

temperature.

study confirms the one found [57] for the 2D Hubbard model. The ground state
in the insulating phase is characterized by a local antiferromagnetic order. Due to
the fact that there are empty and doubly occupied sites, the electrons have some
mobility, but there are strong constraints on this mobility, such that the local an-
tiferromagnetic order is not destroyed. The matrix elements (£, (joad)El (7)) and
(s (joaa)nt(i)) might be considered as the quantities which control the order in
the insulating state.

4. Conclusions

The three-dimensional Hubbard model has been studied by means of the
composite operator method. By considering as basic set of field operators the
Hubbard operators £ and 7, which describe singly and doubly occupied lattice
sites, respectively, the single-particle Green function has been computed by using
the equations of motion in the polar approximation. The paper is dedicated to
the study of the Mott—Hubbard transition, therefore, the special case of half-filling
and zero temperature has been considered. Once the self-consistent equations have
been solved for the paramagnetic case, the density of states has been computed for
a large range of U/t values. Analytical calculations show the existence of a critical
value U, defined by a self-consistent equation and mainly controlled by intersite
correlations, which separates the metallic and insulating phases. For U > U, a gap
opens and the density of states splits into two separated structures. An interesting
result is obtained when we separately calculate the contribution of the fields £ and
1 to the global density of states. Qur calculations show that even for U > U,
where the lower and upper bands are well separated, the two contributions coming
from £ and i do not separate. The ground state in the insulating phase contains
always a small fraction of empty and doubly occupied sites.

This result is confirmed by the calculation of the matrix element (¢, (j)cl (7)),
which gives the probability amplitude of hopping from the site j to the site z. We
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find that when j is an odd nearest neighboring site of ¢, this quantity is not zero
for U > U, and vanishes only for infinite U. However, when we split ¢ = £ + 7 and
analyze (c,(joaa)cl (7)) in components, we find that for /' > U, only the matrix
elements (€, (joaa)n) (7)) and (1o (joaa)EL (7)) survive. The probability amplitudes
(€5 (Joaa)EL (7)) and (n,(joad)nt(4)) vanish at U = U. and remain zero for all
U > U.. On the other hand, the matrix element (¢, (jeven)cl (i)} is always zero
for any value of U; the two contributions (£, (jeven)é5(7)) and (n,(jeven)nl(i))
compensating each other.

Summarizing, our calculations suggest that the ground state of the Mott
insulator has the following characteristics:

(i) a small fraction of sites are empty or doubly occupied; the number of these
sites depend on the value of U/t and tends to zero only in the limit U — oo;

(ii) a local antiferromagnetic order is established;

(iii) the electrons keep some mobility, but this mobility must be compatible with
the local antiferromagnetic order;

(iv) the matrix elements (£, (joaa)EL(4)) and (1, (joad)n (¢)) might be considered
as the quantities which control the order in the insulating phase.
Acknowledgments

V.T. wishes to thank the members of the Dipartimento di Fisica “E.R. Ca-
1aniello”, Universita degli Studi di Salerno, Italy, especially Prof. F. Mancini for
their kind hospitality. The authors wish to thank Dr. Adolfo Avella for the many
useful discussions and his careful reading of the manuscript.

Appendix
The quantities K; (¢ = 1,7), introduced in Sec. 2, are defined as

- I 2 a2 2
(1= —— k k) —
K SkeT (27)7 /QBd k[t1o(k) + t30(k) — 2],

2 42
[(2 = 1 Q / ddka(k)tlo(k) tZO(k)
28

8kpT (27)1 Qo(k) 7
. _ R ay, (k) — tao(k)
o= 3y /n T em

-1 2 dy 2,0 2~ tio(k) — t35(k)
4= ST @y /an bl —m

. _ R dpo2 (110 (K) — t20(k)
K= g /QBd ko () LG (A1)
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. _ £ dp02 () 110 (k) — t20(k)

Ko = gy [ atkat et

A Q d

[X7: 2(27‘-)d /QBd ka(k)[tlo(k)+t20(k)], (AQ)

_ E) (k) _ By (k)
t10(k) = tanh ( ) , t20(k) = tanh ( 2%ksT |’

E" (k) = Ro(k) + Qo(k), EY" (k) = Ro(k) — Qo(k),

Ro(k) = —4dtpa(k), Qo(k) = \/UTZ +4d2e2(2p — 1)2a2(k). (A.3)

When the hopping ¢;; is restricted to first nearest neighbors, all integrations
in momentum space can be reduced to one-dimensional integration. Let us consider
the integral

=3

— Ak Fla(k)], (A4)

2m)?* J o,

where Fa(k)] is a generic function of «(k), defined by (2.6). Tt is straightforward
to derive the following formula:

o | atkrla] = [ doFlalute) (A5)
where
w(z) = (;T)d/n d%s[x — a(k)]. (A.6)

The expression of the function w(x) depends on the spatial dimension. Straight-
forward calculations give the following results:
one dimension

1 1

w(z) = ;ﬁ, (A7)
two dimensions
w(z) = %1{(\/1 ), (A.8)

three dimensions [58]
24 ! dy <3x - y) ( 1)
w(r) = ——= K’ Ole—=
(=) (27)% Jap—o /1 — 42 2 3
24 1 dy 3z —y 1
[/7/ - A
Jr(%)g/_1 —k ( 5 )(9(3 x) (A.9)

where K () is the complete elliptic integral of the first kind and K'(z) = K(v1 — z2).
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We note that the formula (A.9) is valid for # > 0; but it is easy to see that
w(—x) = w(x). It is possible to see that (A.7)—(A.9) satisfy the relations

[1]
[2]
(3]

/1 dew(x) =1, (A.10)

1
! 1
2 _
/_ dezw(z) = 57 (A.11)
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