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This paper reviews the use of adiabatic approximations in quantum
optics. The general principle is explained in terms of the Landau—Zener model
and the recently developed stimulated Raman adiabatic passage scheme.
The features characteristic of adiabatic evolution are extracted from these
examples. Our recent work on adiabatic level preparation and cavity mode
transfer of excitation is presented and discussed.
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1. Adiabatic processes; an introduction

Much of the success of quantum mechanics derives from its ability to predict
energy eigenstates of various systems, ranging from elementary particles to tech-
nically important materials. These calculations are based on the stationary states
and do not involve any explicit time dependence. Even the many applications to
scattering phenomena reduce the situation to particle fluxes and their redistri-
bution in the scattering region into outgoing fluxes. Only recently has it become
possible to excite nonequilibrium quantum states and follow them as they evolve
in time. These advances derive from the availability of short laser pulses and fast
detection schemes.

In many time dependent problems, the concept of adiabaticity plays a central
role. In fact, one may claim that our ability to separate a few degrees of freedom
and follow their evolution derives from adiabatic separation of the various physical
features involved. Some of them can be regarded as so slowly varying that they
provide a stable background only.

In 1932 Landau and Zener [1, 2] introduced the simplest dynamical model
which combines the time dependent aspect with adiabaticity and asymptotic tran-
sition probabilities. This system treats two levels which are described by the Hamil-
tonian
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For large values of time ¢, the two levels are well separated and no transitions take
place. Around ¢ = 0 the levels cross, and population transfer becomes possible.
This happens within a characteristic time scale given by

v
T=+ (1.2)

If A is small enough, this is a long time, and we may assume that an adiabatic
diagonalization works. The corresponding eigenvalues are

Ey = £ /022 + V2) (1.3)

giving the solutions of the form
t
C(t) x ¢y exp [1/ dt'/(A2t2 + VZ)]

¢
~+cs exp [—i/ dit'\/(A22 + Vz)] . (1.4)

In the adiabatic basis, the two incoming states go over into swapped outgoing
bare states, which means that in this basis, the transition rate is the probability
of not changing state; this is the general idea in adiabatic approximations. Thus
in the bare state representation, the coefficient which has C(t = —o0) = 1, gives
at t = 400 the probability to have stayed in the same bare state. The expression
(1.4) does not seem to give any change of amplitude of its components, but closing
the time contour in the complex plane, we notice that the contribution from the
branch point at ¢ = i7" must be considered.* This gives the result

iT 2
C(t = 00) x exp 21/ dt'\/(A2'2 4+ V2)| = exp [— %] . (1.5)
0

For no coupling, V' = 0, this must be unity, which serves to determine the prefator.
The probability of transfer becomes thus
ay? V2

P_s=1—exp [—T] ~ T (1.6)

which will be seen to agree with the result from perturbation theory. This can
be obtained by an honest calculation, but its form can be found by the following
outrageous argument: A naive application of the golden rule transition rate gives
and “instantaneous” rate

Py_o(t) = 27V26(AE = 2Xt). (1.7)

When this is integrated over all times, the result (1.6) emerges. Do not ask me to
provide an excuse for this calculation, none can exists.

*The argument given outlines the steps only, but a detailed evaluation of the expressions in
either basis gives the result given here.
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The Landau—Zener model is the prototype of all adiabatic models, 1t shows
how quantum physics manages to transfer probabilities by using only oscillat-
ing functions. The asymptotic behaviour of scattering theory’s in and out states
emerges clearly. In addition, the model is exactly solvable, the asymptotic result is
valid for all parameter values and physically transparent transition rates emerge.
The reason the adiabatic result holds universally is that the adiabatic energies
(1.3) have only one singularity in the whole complex plane. Thus there is only
one time scale in the problem. The result (1.5) also shows why adiabatic results
cannot be obtained in perturbation theory, A — 0 is an essential singularity. This
also tells why it is so difficult to obtain systematic corrections to adiabatic results,
no power series expansion in the slowness parameter can work.

One unpleasant feature of the Landau—Zener model is that the system cannot
strictly speaking be defined at ¢ = +00, because the energy levels diverge. This is
corrected in the model devised by Demkov and Kunike in 1969 [3], which is also
solvable, but where the adiabatic result is not exact. This has made 1t possible to
consider the approach to adiabaticity, and in this case to evaluate the correction
terms [4].

In this paper, I will discuss certain uses of adiabaticity in modern quan-
tum optics, consider the general features of such approximations and give some
examples of recent applications.

2. The STIRAP process

Recently an important application of adiabatic thinking has been the process
called STIRAP (stimulated Raman adiabatic passage) [5, 6]. In its fundamental
form, it consists of three levels, {|1}, |2}, |3)} coupled sequentially. However, only
the middle one is supposed to be an excited state, the other two are ground states
or metastables. In a rotating wave approximation, the Hamiltonian is

0 2, 0
0 25 0

The intermediate level detuning A may differ from zero, and the coupling rates
£2; are taken to be time dependent. If we assume that these are slowly varying, we
perform an instantaneous diagonalization by using the states

lo+) = sin psin 0|1) + cos p|2) + sin ¢ cos 63},

|o) = cosf]1) — sin 6]3), (2.2)

lo—) = cospsinf|1) — sin¢|2) + cos ¢ cos 03},

where we have the eigenvalues {w,, 0, w_} with

wy = %(Ai,mumg) (2.3)
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and

22 =0} + 23 (2.4)
The angles are defined by

tan 6 = %’ tan 2 = %. (2.5)
For A =0, we can choose sin ¢ = cos p = 1//2.

The state

01) — 113)
=1 2.6

|§00> \/m ( )

is seen to belong to a zero eigenvalue. If we now let
N N

t—l}I—noo 9_2 - 0’ tl}ﬂ—noo 9_2 =& (27)
we find that starting in the state |1), the transfer to the state |3) is perfect

Aim feo) = 1), Lim o) = —[3). (2.8)

As this approach starts by coupling two totally empty states it is usually termed
“counter-intuitive” .
Using the states (2.2) as basis states, the Hamiltonian becomes

4w 0 0 0 i sin ¢ iy
H=| 0 0 0 |+ —ifsing 0  —ifcosep |- (2.9)
0 0 —w —ip  ifcosep 0

The second term is neglected in the adiabatic approximation. The dynamic evo-
lution 1s confined entirely to the subspace with vanishing eigenvalue. Thus the
adiabatic limit effects the population transfer |1} — |3) without populating the
excited state |2).

This STIRAP process has been applied extensively to laser-induced pro-
cesses; and many experimental realizations have already been achieved [7]. It pro-
vides another efficient prototype of adiabatic transfer in addition to the Landau—
Zener situation. It illustrates some fundamental features of all such processes,
which we can summarize as follows:

e If the interaction is not analytic in time, the adiabatic behaviour is dom-
inated by the discontinuity. If this occurs in the a-th derivative, and the
adiabatic time scale is given by 7', the corrections to the adiabatic result
disappears like T-(“+1) as found in Ref. [8]; see also [9].

e For smooth pulses, the analytic behaviour is strongly dependent on how the
couplings behave at infinite times, but the corrections to adiabaticity dis-
appear like exp(—gT'), where f is determined by the details of the interac-
tions [4]. In most numerical work the pulses are supposed to have a Gaussian
form. From the point of view of adiabaticity, this may not be optimal; simple
hyperbolic dependence may be more advantageous.
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In order to illustrate the adiabatic features of the problem, we consider a
somewhat modified model of the STIRAP situation. As the initial pulse £22(¢)
couples only empty levels for t ~ —oco we can let it start at a fixed value without
loss of physics. The same holds for the other pulse £21(7); at large times it ideally
couples only empty levels and can approach a constant value. Thus we may arrange
the time dependences such that 2 in (2.4) is a constant, which grossly simplifies
the treatment. In Ref. [9] we show that the choice

02— o 02— e (2.10)
V7 1 fexp(—t/T)’ 27 14 exp(t/T) '
allows an analytic solution for the population on the final state in the form
les(00)|? = tanh* (7 AT) ~ 1 — 8 exp(—27AT), (2.11)

where the expansion holds in the adiabatic limit 7" — oo. In the perturbative limit,
A — 0 | the process is a two-step transition and its probability properly goes as
(AT)*. The exponential dependence characteristic of adiabatic behaviour is seen
to follow all the way to final full adiabaticity.

In our work [9], we investigated the non adiabatic corrections to a STIRAP
process with pulsed couplings. We were indeed able to find the expected expo-
nential behaviour over four orders of magnitude in the adiabaticity time scale.
However, for very large values of T, the corrections start to oscillate violently.
This feature is not explained within the existing theory but it is found to be a per-
sistent feature of such systems. In an analytically solvable model of the STIRAP,
Vitanov and Stenholm [10] managed to obtain an adiabatic result of the type

B
14+ (AT)?
where A and B are constants and ¢(AT') is a given function. This result displays

1 — |es(00)|? ~ Aexp(—7AT) + cos? p(AT), (2.12)

the exponential behaviour characteristic of the adiabatic situation, but also the
asymptotically dominating oscillatory contributions. We know of no simple ap-
proximative way to extract these terms in the general case. For the details the
reference should be consulted.

3. Features of adiabatic evolution

The Schrodinger equation we consider is assumed to scale as follows:

.OF

186_15 =AH/T)F, (3.1)
where the parameters A and 7T denote the strength and the duration of the in-
teraction. By introducing the scaled time 7 = ¢/T, we can write the equation
as

0¥
o= AT H(T)¥, (3.2)
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which shows that the adiabatic limit 7" — oo is equivalent with the strong coupling
limit A — oo. This has been utilized frequently in our numerical calculations, when
we do not want to change the coding of the interaction interval in time.

If we take the rate of change of the Hamiltonian to be formally given by

1 H

— - 3.3
T H (3.3)
we find the condition for adiabaticity to be
H
h— <« H. 3.4
7 < (3.4)

If all time dependence resides in the off-diagonal coupling V' and the energy eigen-
values are spaced by AFE this relation gives

h%§<AE. (3.5)

This is the form given in most texts. In the case (3.1) the condition becomes

AT > 1 (3.6)

as we found above; this is the form usually given for adiabatic following in magnetic
resonance [11].
In the STIRAP situation, the Hamiltonian has the property

0 £ O
0 2 O

In this case, the right-hand side of (3.4) goes to zero and the inequality (3.4)
cannot remain valid for ¢ — 4oo. It thus seems that the initial and final times are
not adiabatic, but for large ranges of the interaction parameter strength, the adia-
batic transfer dominates and exponential corrections only ensue. The oscillatory
behaviour must thus derive from the initial and final periods when adiabaticity is
violated.

For the moment we do not know any analytic approach to Hamiltonians
which vanish asymptotically at ¢ = +oo. This singularity prevents us from closing
the contours in the complex time plane. The fully adiabatic behaviour found in
Eq. (2.11) derives from the fact that, in this model, the Hamiltonian never goes
to zero, but due to the condition 22 = 27 + 22 = constant, the eigenenergies
never vanish and adiabaticity can be made to hold at all times. This feature 1s
common in many adiabatic models; the simple STIRAP is unusual in this aspect.
Even here, more involved level schemes, however, do tend to retain some terms in
the Hamiltonian finite.
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4. Applications
4.1. Coherent preparation

We consider a generalization of the simple three-level STIRAP to a situation
with NV levels {|1},]2),...|N)}. The coupling is assumed to be of simple star-type
with the level |[N) coupled to all the other ones, but these are not coupled among
themselves. The state |N) is assumed to be an excited one, and it may be able
to decay spontaneously. If the states coupled to |N) belong to the same angular
momentum manifold, the dipole selection rules state that N can be at most four,
but we may safely assume it to be possible to combine several different manifolds.
The coherence necessary in the couplings may well be achieved with coherent laser
sources.

If we assume the initial state to be

Wt = —o0)) = [1) (4.1)

and try to prepare a preassigned linear combination

(1 = 00)) = c2]2) + ¢3]3) + ... en_1 [N — 1), (4.2)

we may use a generalization of the STIRAP approach. This has been shown to be
possible by straightforward computations [12], and an application of a coherent
control algorithm [13]. The amusing conclusion of the latter approach is that the
program can pick out the counter-intuitive pulse sequence on its own as the optimal
path to the desired final state.

If we introduce the transformation U which diagonalizes the Hamiltonian

D=UHUT, (4.3)
we find after changing to the adiabatic basis the Hamiltonian of the form
0 il
—irt o .
H=p-wtly~| ™ . (4.4)
ot 2 0
0 -9

The dots indicate nonadiabatic coupling terms which may be neglected. The
strongly coupled subpace with eigenvalues £42 is called a “bright subspace” be-
cause 1t contains an admixture of the upper state which may emit a photon sponta-
neously. The remaining N — 2 states belong to zero eigenvalues and do not contain
any admixture of the single excited state. The operator I'gives the adiabatic cor-
rections in this subspace, and in spite of the fact that it is assumed small in the
proper limit, it cannot be neglected. The reason is that in this subspace the di-
agonal elements are zero, and thus the condition (3.5) cannot be satisfied. In this
dark subspace, the levels are easily mixed and hence the influence is dominated
by I'. On the other hand, the dynamic evolution takes place almost entirely in
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this subspace, and thus we have reduced the original N-dimensional problem to
one of evolution in a subspace of N — 2 dimensions with the effective Hamiltonian

0 ir

Heff =
—irt o

(4.5)

This shows how separation of fast and slow time scales can provide an effective
Hamiltonian description in a reduced Hilbert space where the fast subspace has
been projected away.

Then one may ask the question whether it is possible to affect a desired
transformation in the full N-dimensional space by only dynamicsin the subspace of
slow adiabatic evolution. In Ref. [14] we show in the framework of a solvable model
that such a process is possible. We do not claim that an arbitrary transformation
can be achieved this way, but in many situations it can provide a solution.

4.2. Cavity QED

A simplified model of cavity quantum electrodynamics (QED) can be pro-
vided by the Jaynes—Cummings model. In this section we are going to use a version
with two cavity modes interacting with a single two—level atom. The Hamiltonian
is given by

0
H= 5(03 +1) —|—w(a{a1 + a;az)

—|—g1(a4{0_ +ajot)+ gz(a;(f_ + aso ™), (4.6)
where a; (i = 1,2) are the bosonic mode annihilation operators, and the ¢ and
o~ are the ordinary Pauli operators. We here assume that all frequencies are the
same, {2 = w; the atomic frequency could be different without any change in the
treatment below.

If we now introduce the operators

B= m(glal + gaas) (4.7)
and
A= ¥(9201 — g1az), (4.8)
9 + 93

we find that they obey bosonic commutation relations and the Hamiltonian (4.6)
can be written as

H= g(ag+ 1)+ w(ATA + B'B) + G(Bo+ + Bto™), (4.9)

where the new coupling constant is

G=1/g}+43 (4.10)
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This Hamiltonian corresponds to the ordinary single mode case, with the oscillator
mode A totally decoupled from the atom. This can consequently be solved directly
as in the single mode case [15]. The model may, however, also be used in a different
manner [16].

If we can control the coupling constants in such a way that they satisfy the

relations
lim (g—l) =0, lim (g—l) = —oo, (4.11)
t——00 g2 t—+o00 g2

we find for an arbitrary photon state of the form

lim _[f)= lim_f(AD)|0) = f(a])|0),

t——o0
Jim [fy = Tim f(AD)|0) = f(ab)[0). (4.12)

Thus we see that this adiabatic change of the couplings can transfer any arbitrary
quantum state in one cavity mode into the other one; we do not need to know the
state in advance. The process is a direct generalization of the STIRAP situation,
the couplings are turned on in a similar counter-intuitive way, and the result is
analogous. The larger energies that are involved, the higher the basis states we want
to transfer, the more demanding we have found the requirement of adiabaticity,
but the desired result is always achieved when the process is slowed down or
equivalently the coupling strength is increased.

The scheme explained above does require that the two cavity modes in-
volved are fully degenerate. It is, however, possible to find a way to overcome the
restriction wi = wo. We then start with the Hamiltonian

0
H= 5(03 +1) —|—w1a1a1 + wza;az

—|—g1(a4{0_ +ajot)+ gz(a;(f_ + aso ™). (4.13)
We assume that we find a way to modulate the coupling constants to be given by
g = 2N\ cos AL, (i=1, 2), (4.14)

where
W2 — Wi
2

On this time dependent Hamiltonian, we apply the unitary transformation

A= (4.15)

U = exp iA(aJ{al — agaz)t . (4.16)

The rotating-wave-approximation is assumed to hold, giving

2 cos At X exp(FiAt) ~ 1, (4.17)

which produces the transformed Hamiltonian
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H=U'HU - iUT%U = %(03 + 1)+ (w1 + A)a{al + (wa — A)agaz
—|—/\1(aJ{U_ +ajot) + /\z(aga_ + aso ™). (4.18)
Now the modes have the same frequency %(wz + w1) and we are in the previ-
ously described situation. The correction terms oscillate as exp(+2iAt), and their
influence is expected to be of the order (A/A)2.
The adiabaticity condition requires that AT >> 1, which implies that also
AT > 1. This puts restrictions on the method, but in the opposite limit, AT < 1,
the detuning is not necessarily very efficient in destroying the adiabaticity. This
situation with different mode frequencies has not been investigated numerically.
The adiabatic transfer takes place in the frame defined by the unitary trans-

formation (4.16). Because however all moments of the form
((alar)"(abaz)™) = (U(alar)™ (alaz)™ UT) (4.19)

have the same values in both frames, transfer of field population in one frame,
will appear as the same transfer in the other one. Only coherences between the
amplitudes will have a different time evolution. This is, however, rather easily
taken into account in the present case.

5. Conclusion

This paper gives a short review of some of the interesting and fundamental
aspects of adiabatic processes occurring in quantum optics systems. Some have
found wide applicability in laser spectroscopy of atoms and molecules, others re-
main to be introduced into experimental situations. In this concluding section,
I summarize some of the main points of the present text:

e Adiabatic processes are both efficient and robust when they can be imple-
mented. In many cases, the adiabatic limit can be reached when the coupling
strength is increased.

e The corrections to adiabatic transfer of population tend to vanish exponen-
tially with the adiabaticity parameter.

e In systems like STTRAP, where the Hamiltonian becomes exactly zero at
some limiting times, the adiabaticity breaks down, and deviations from ex-
ponential behaviour emerges. This may manifest itself as oscillatory depen-
dences on the adiabaticity parameter. These are genuine features of such
systems, but they do manifest themselves at such low levels of corrections,
that they may lack practical significance.

e The original adiabatic processes have been chosen such that the energy is
conserved between initial and final states. This 1s, however, not necessary;
some generalizations of STIRAP do not have this feature. If one wants to
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compensate for energy mismatch, the method introduced in Sec. 4.2 for cav-
ity modes can be applied. Here energy differences are compensated by equip-
ping the levels involved with suitably generated side-bands. In the suggested
form, or suitably generalized, the method can be applied to most situations
of adiabatic transfer.

e Finally we stress that adiabatic methods are very common and efficient when
they are applicable. We do not, however, know of a systematic way to gener-
ate approximations, where the lowest order one is the well-known adiabatic
result, and there exists a well-defined method to generate higher order cor-
rections.
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