Vol. 101 (2002) ACTA PHYSICA POLONICA A No. 3

Proceedings of the International Conference “Quantum Optics V", Koscielisko, Poland, 2001

On Mixed States Entanglement
and Quantum Communication: Aspects

of Quantum Channels Theory

P. HORODECKI

Faculty of Applied Physics and Mathematics, Technical University of Gdansk
Narutowicza 11/12; 80-952 Gdansk, Poland

Basic aspects of quantum communication based on quantum channels
theory are reviewed together with suitable examples. The key notion of quan-
tum channel capacity is discussed. The role of mixed states entanglement as
a practical tool in quantum channels theory is explained in detail. Applica-
tion of recent results on non-positive partial transpose bound entanglement
conjecture to binding entanglement channels shows that validity of the con-
jecture for some states implies nonadditivity of two-way quantum channel
capacity. Some aspects of robustness of entanglement in context of positive
maps theory are also discussed.

PACS numbers: 03.67.—a, 03.65.Ca, 03.67.Hk

1. Introduction

Quantum communication is an important part of quantum information the-
ory (see [1] and references therein). There are two basis fields of quantum com-
munication theory. The first develops applications of quantum mechanics to com-
munication of classical bits. This involves in particular very important quantum
cryptography area. The importance of these issues is undisputable for practical
reasons. The second field involves investigations of how to use quantum mechanics
to improve and optimise quantum states transfer. This is “fully” quantum part of
quantum communication and we would like to focus on that. It is natural to ask
why this part i1s interesting or important. There are many reasons of more or less
practical reasons for that:

— For example it allows to study fascinating quantum effect called quantum
teleportation even if we have real physical scenario with presence of noise. This 1s
because of so-called distillation [2] of quantum entanglement. Recently it has been
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shown that quantum teleportation not only can be viewed as quantum computing
primitive [3] but also allows to overcome well-known linear optics problem in
quantum computer theory [4].

— Some versions of quantum cryptography (so-called BB84 scheme [5]) in-
volve explicitly physical transfer of classical information encoded in quantum sys-
tems that have to be physically transmitted.

— Other cryptographic methods (Ekert scheme) [6] use quantum states
transfer implicitly (so-called shared entanglement that has to be distributed first).

— Quantum computing — intensively investigated since well-known Shor’s
discovery [7] — turns out to require so-called quantum error correction [8, 9] that
can be translated into problem of reliable transmission via quantum channel and
in some cases both the description and the solution achieved by entanglement
distillation idea are simplified (see [10]).

— One of main tools to treat many issues of quantum communication is dis-
tillation of quantum entanglement that allows for nontrivial cryptographic scheme
called quantum privacy amplification (QPA) [11].

— If one would like to distribute processing of quantum algorithm among
several quantum computers in nontrivial way then it must be done with help of
“fully” quantum communication. Otherwise we could not utilise quantum coher-
ence that is absolutely crucial for the algorithm.

All the above is enough to justify an interest in “fully” quantum communi-
cation and related topics.

Before discussing quantum communication let us recall fundamental concepts
of quantum information theory. There are two basic concepts used in the theory.
The first is a unit of quantum information. This is qubit or quantum bit — an
extension of notion of bit from classical information theory. This 1s a physical
system described by two-dimensional Hilbert space or the state of such system. It
can be state of elementary spin, two-level atom or photon polarisation state. It has
two basic states |0), |1) corresponding to eigenstates of observable corresponding
to natural setting of our measuring apparatus. The state |0), |1) can play the
same role as “states” of classical bit 0, 1. The fundamental difference is that
unlike in classical theory quantum information can be processed qubits that are
superpositions

|6) = al0) +b]1),  laf* +[b* = 1. (1)

The second basic notion of quantum information theory is quantum entan-
glement. This is the property that can have quantum system AB composed of two
elementary subsystems (A and B). Namely, in same cases the whole system is in
the pure state while subsystems are not

|Pap) # |94)|0B). (2)

An elementary example of such state is the singlet state describing spin degrees of
freedom two spin—% particles
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1
V=) = (01} = [1)]0). (3)

Here vector [0) (|1}) corresponds to “spin-up” (“spin-down”) state of the system.

The state (3) (or any of its transformation by product ¢; @ ¢; of the Pauli
matrices acting on elementary spins) serves as a unit of quantum entanglement
called e-bit or entanglement bit.

The essence of quantum information theory is that, speaking very roughly,
initial quantum (classical) information written in qubits (bits) can be encoded
into entanglement, that is counted in e-bits, and processed only in that form. This
serves either to paralelise the process of computing or to delocalise transferred
information or both.

The main problem is that we usually have uncontrolled action of environment
(like thermal bath) on our system and neither of two basic quantum informational
units (1), (3) can survive in pure form. They are turned into mixture called den-
sity matrix. The action of environment is modelled by what one calls quantum
channel. The question how to encode qubit so that its information is retained in
the resulting density matrix is a subject of quantum error correction theory which
surprisingly can be viewed either as a part of quantum communication or as a
part of quantum computer theory ([10], see below). The question whether any
entanglement is retained in a given mixed state and, if so, how much of that we
have there is a subject of quantum entanglement theory. The two above theories
(devoted to error correction and entanglement) have been linked within guantum
channels theory in seminal work [10] where mixed states entanglement was one of
central notions.

Werner [12] first pointed out that it makes sense to speak about entanglement
in case of mixed states. For systems with corresponding Hilbert spaces of finite
dimension the original definition [12] can be simplified as follows (see [13, 14]):
Consider the so-called d4 ® dp state g. This is density matrix of bipartite system
defined on Hilbert space Hap = Ha © Hp with dimH 4 = d4, dimHpg = dg. We
say that ¢ is entangled (respectively separable) if can (cannot) be written in the
form

QAB IZPinOW@WfAWQ (4)

i=1

for some set of pure states |14}, [¢%) and probabilities p;.

The state ¢ defined on finite dimensional Hilbert space is called mazimally
entangled if it is pure and has one of its reduced density matrices maximally mixed.
In the present paper we shall discuss and apply qualitative aspects of mixed states
entanglement defined above. Quantitative aspects within so-called entanglement
measures theory [14-16] are reviewed in [17].
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The notion of mixed states entanglement first considered in context of quan-
tum nonlocality has turned out to be important in context of quantum communi-
cation, especially quantum channels capacities.

In this paper we shall focus on some of those quantum channels properties
that are connected to density matrices and their entanglement. We shall review
some basic notions of the quantum channels theory and show how they are related
to quantum mixed states. We shall also review some aspects of mixed states en-
tanglement that are important for quantum channels. We explain simply the idea
of distillation of quantum entanglement [2]. Then we shall present bound entan-
glement (BE) phenomenon [18] and recall non-positive partial transpose (NPT)
bound entanglement conjecture [19, 20] having far reaching consequences [21]. We
shall apply concept of binding entanglement channels [22, 23] to show that the
result of Ref. [21] implies serious direct consequence for quantum communication
— nonadditivity of quantum capacities conjectured in [24, 22]. Finally, we shall
discuss briefly question of robustness of entanglement in context of positive maps

(cf. [25]).

2. Preliminaria — quantum channels and quantum operations

Let us consider density matrix ¢ defined on Hilbert space H 4, dimH 4 = d4,

endowed with standard ds-element basis {|i)}¢4:1. The most general physically

feasible quantum operation on o 1s

¢ — ¢ = Ae)/Tr[A(e)], (5)
where ¢' is defined on Hp (dimHp = dp), where A is of so-called completely
positive* form

m
Ao) = VioV), (6)
k=1
with operators V;: Ha — Hp satisfying additional condition

VIVi <1Ip (7)

NE

C=

B
I

1
and Ip is identity matrix. The notation X < Y is used for hermitian X, Y
operators and it means that for any ¥ one has (V| X |F) < (F|Y|F).

In the above g, ¢’ represents input and output quantum states (or density
matrices) respectively. They describe different physical systems when H4 # Hp.
This happens for instance when we perform partial trace: at the beginning we have

*This is, In a sense, operational definition of completely positive map. Original (equivalent)
mathematical definition is: linear map Ao p on B(H) (bounded operators) is completely positive
if for any natural n the new (extended) map I, ® Acp defined on My, (C) ® B(H) is positive.
Here M, (C) stands for n X n complex matrices. Let us recall that linear map © is positive if for
any hermitian A with nonnegative spectrum @(A) has nonnegative spectrum as well.
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compound physical system in global state g12, s0 Ha = H1 @ Hs. After performing
partial trace the reduced density matrix g; (g2) describes subsystems so one has
Hp = H1 (Hp = Ha) after tracing out second (respectively first) subsystem.

The so-called completely positive map A (6) is trace preserving if for any
o one has Tr[A(g)] = 1. This happens if and only if we have equality in (7) i.e.
C' = Ip. Then denominator in (5) is trivially equal to 1. Trace preserving quantum
operation is called guantum channel or quantum operation without postselection
and plays fundamental role in quantum communication theory. If in addition the
channel A preserves identity A(14) = Ip then we say that it is bistochastic.

The map A is called probabilistic quantum operation or quantum operation
with postselection if A < I in (7). For any g it can be performed in the lab with
probability p = Tr[A(g)]. However, we can add the operator Vo = /T — A to the
set of operators {Vj }7, defining A and then the new map

A(o) =D VieVi' = Ae) + VimoVi} (8)
i=0

is trace preserving and serves as implementation of A (see Appendix A). Here we
discuss special classes of quantum operations.

Von Neumann measurement without postselection. Then V; = P; are projec-
tions that sum up to identity. Then A is trace preserving and has interpretation: we
have performed measurement of some quantum observable (hermitian operator)
of the form A = Zi’:l Ai P; (A; real) but we have not read the result. If we read
the classical results during the von Neumann measurement of observable A, then
we would get some of the results i = 1, ..., m with probability p; = Tr[P;eP].
Only after getting ig-th result we would know that the initial state ¢ had been
subjected to the transformation ¢ — o} = P;,0P;,/Tr[P;,0P;,].

Von Neumann measurement with postselection. We can decide that we are
only interested in cases when single chosen result ¢y takes place. This generates
single operation

¢ — Q;’D = PiuQPiu/Tr[PiDQPiD] (9)
that can be performed and probabilistically (with probability p = P, 0P,/
Tr[Piy0F;,]). Wesimply “discard” our system unless the result of the previous mea-
surement is “satisfactory” 1.e. ¢ = i¢g. Analogous protocol can be performed with
ieg Pioli [ Tr[PioP;].
Obvious examples of quantum channels are von Neumann measurement

subset J of “satisfactory” results ¢ € J leading to p — ¢y =5

without postselection and partial trace. Probabilistic operation is just von Neu-
mann measurement with postselection. Below we present other interesting exam-
ples.

Exzample 1. Filtering operation [26, 27]. This is the most simple quantum
operation of the form (5) i.e.

Agirer(0) = V4 QV1T/TT[V1 QV1T]~ (10)
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This is, in general, probabilistic operation. According to (8) it can be interpreted as
one of two outputs of trace preserving operation. The probability that (10) is per-
formed is p = Tr(Vy ngT). The special (nonprobabilistic) case of filtering operation
i1s unitary operation where V; is equal to some unitary matrix U.

Exzample 2. Depolarising channel [10]. The most popular quantum channel
modelling the noise in quantum computer i1s depolarising channel mapping states
on H 4 onto the states onto the same space

A(e) = pla/da+ (1= p)o. (11)
This channel is also bistochastic. It does nothing to the state with probability
(1 — p) and turns it into completely chaotic mixture I4/d4 with probability p.
For qubit case dq4 = 2 we can reproduce the form (6) with 1} = @BI, Vi =

1—
2

oi—1, 1 =2, 3, 4 where o3, k =1, 2, 3 are usual Pauli matrices.
Erxample 3. Erasure channel [28]. This is the simple channel

A()pl0){0] + (1 = p)e. (12)
The channel simulates losses of particles in the process of transfer:t when particle is
lost we can produce its duplicate but only in some fixed blank state |0){0| because
the state of the lost particle cannot be reconstructed.

3. Quantum channels capacities

3.1. Distant labs paradigm

Let us consider the distant labs paradigm (see [30]) in which two observers
Alice and Bob stay in two spatially separated laboratories. Each of them is al-
lowed to perform local operations (LO) on quantum system in the corresponding
lab. They are also allowed to communicate classically (CC) exchanging classical
bits. All operations allowed in this paradigm are called LOCC operations. In usual
LOCC regime these are all operations Alice and Bob are allowed to perform. How-
ever, to make the whole game interesting they are given some additional resource.
Usually it is one of two:

(i) quantum channel connecting each other,

(ii) shared! quantum entanglement.

Below we shall focus on case (i). Now let us suppose that apaert from LOCC
operations the labs are connected by quantum channel (it could be optical fiber)
and they are allowed to exchange quantum particles (for instance photons with
given initial polarisation) sending it down the channel.?

1 This interpretation is due to Professor Robert Alicki [29].

1One says that Alice and Bob share quantum entanglement or entangled quantum state if
there is a bipartite quantum system in an entangled state such that Alice (Bob) has access only
to the first (the second) of its subsystems.

§Let us note that quantum channel has two meanings here: (a) physical “channel” transmitting
physically given particle, (b) quantum trace preserving operation A that affects the state of the
particle during the transmission.
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3.2. Swingle copy regime and transfer fidelity

Let us suppose that Alice wants to transfer quantum state ¢ belonging to
known Hilbert space H4 to Bob sending the particle in the state ¢ down the
channel A connecting two labs. Usually it is impossible to do that reliably —
during the transmission the density matrix of pure state |¢)(¢| is transformed into
a mized state 0 = A(|¢){¢|). The corresponding fidelity of the transmission

f(@) = {9lelg) = (slA(l0)(2])]9) (13)

is usually poor. This is always when the channel A is noisy, 1.e. represents action
of environment that destroys some part of quantum information. One defines also
average fidelity [31] f = [ f(¢)dM (¢) where we integrate over uniform measure
dM(¢) on set of all normalised pure states ¢ € H.

Erxamples: fidelities in ideal and von Neumann measurement channel.
We can consider ideal channel ¢ — Z(g¢) = ¢ that does nothing to the state
during transmission. This is special case of unitary channel with U = I4. Clearly
the transmission is completely faithful as in this case transmission fidelity (13) is
equal to unity for any normalised vector |¢).

On the other hand, let us consider one qubit channel

0 — A(e) = PoyoPoy + PlyePpy, (14)

which is evidently defined by von Neumann measurement. Here ¢ is one qubit state
describing spin—% and we use the notation

Py = |){7]. (15)

Let us suppose now that the transmitted state is pure: ¢ = Py = |¢)(¢| where ¢ is
given by (1). The output state is mixed and the corresponding fidelity f = |a|*+]b]*
is evidently not ideal unless |¢) is equal either to |0) or |1). The average fidelity

can be calculated to be [31] f = 2/3.
3.3. Asymptotical regime and quantum capacities

In general one considers the transmission in asymptotical regime. We shall
briefly describe the notion of quantum capacity introduced in Ref. [10] (for alter-
native, equivalent definition see [32]).

Let us consider a new (composed) channel A®" = A ® ... ® A composed
of n channels A. Let us suppose that Alice has arbitrary state W* of k-qubits (it
can be entangled). She can perform some encoding operation D (acting on her k
qubits) that gives the new state denoted by Ap(|J#*)(¥*|) and send it down the
channel A®".

In this process action of the global channel is composed of that of decoding
operation so the resulting state on Bob side is [A®" o Ap](|&*)(¥*]). The latter
can be subjected to further Bob’s decoding operation Ap getting finally o, =
[Ag o Ao Ap](|&*)(¥*]). This can be schematically written as follows:
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A®"

Y| 22 Ap (WF) () 2= [A9" o Ap](10F) (W)

A
= g, = [Ap 0 A% o Ap](|¥F)(WF]). (16)
For many channels one can arrange the above process so that the transmission is
asymptotically reliable in the sense of transmission fidelity (13) i.e. that

k

for any k-qubit state |¥;). One can maximise the rate k/n in the limit of large
n over all possible encoding, decoding operations (Ag, Ap) and under classical
resource C' =— —, < ¢ that corresponds to sending classical communication (CC,
see above) in one of the following regimes:

(i) “one way” — CC restricted to sending bits only from one experimentalist
to another i.e. either form Alice to Bob (C' =—) or from Bob to Alice (C' =),

(ii) “two way” — both from Alice to Bob and vice versa (C' =),

(iii) “zero way” — no¥ classical communication between Alice and Bob al-
lowed (C' = ¢).

Remark 1. I'mportant observation [10]. Let us note that instead of being
physically connected by n channels forming A®"™ Alice and Bob can use one channel
many times sending many particles one after another. This is why the quantities
defined below are viewed as capacities of single channel A. This translation of the
problem from “spatial” to “time” regime was utilised in an interesting way in case
of photonic channels [33].

The rate k/n of the process (16) maximised under encoding, decoding and
one of the above classical resource (' is called quantum capacity of channel A and
denoted by Q¢ (A) with C =—, —, —, ¢ ([10, 32], for recent results see [34]). It is
obvious that Q. is not smaller than any other of remaining three capacities be-
cause they utilise classical resources that are weaker than two-way resource C' =«.
One of basic results is that y, = @_ [32, 10] while any protocol corresponding to
()4 represents some so-called quantum error correcting code.

The physical meaning of quantum capacity is the speed of reliable quantum
information transfer. In other words it says how many times we must use the
channel per one qubit of reliably sent quantum information.l This can be expressed
as follows:

Using quantum channels n times (for large n) Alice can send reliably & ~
nQc(A) quantum bits to Bob down the channel A®” with help of classical com-
munication resource C'.

TMore precisely we allow for asymptotically vanishing rate (in the limit of large number of
uses of channels n) of classical bits to the number of reliably sent quantum bits.

IReaders familiar with quantum version of first Shannon theorem [35] must notice that here
we do not assume any statistics on Alice’s signals. They can be interpreted as pure states coming
from a source described by maximal entropy. We shall not discuss quantum version of first
Shannon theorem here recommending comprehensive review [36].
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Remark 2. Typically in quantum communication the operation Ag encodes
qubits into entangled states in order to delocalise transferred quantum informa-
tion. This hides it from environment that acts locally because of tensor product
structure of A®",

Remark 3. There is interpretation [10] of the quantum capacity in sense of
“reliably transmitted Hilbert subspace”. The global channel transmits states de-
fined on global Hilbert space of H,, = H%" dimension (d4)". The maximal number
of qubits transferred reliably can be associated with 2*-dimensional subspace of
Hi C Hy, with n = logdimH,, k = logdimHy.

Fundamental questions. For given quantum channel A the very fundamen-
tal questions are: (i) is the quantity Q¢ nonzero? (ii) what are lower and upper
bounds on @¢? (iii) what is its value? Usually (iii) is extremally hard problem and
(ii) becomes important. One of main unsolved problems is whether Q¢ is additive
or not? There 1s one natural bound: capacity of the channel A mapping states in
‘H 4 into states on Hp cannot be greater than logdg, dg = dimHp:

Qc(/l) S 10g2 dB. (17)
For d4 = dp this bound is saturated by ideal channel (see Sec. 3.2).

Ezample 1. Class with zero capacity: separable channels. There is natural
class of quantum channels with capacity zero — those are separable channels [37].
These are those channels that have one rank operators V3 in decomposition (6).
From elementary algebra we know then that Vi = |¢;)(¢r| for vectors |¢r), |o)
uniquely defining Vj. There is physically justified interpretation of such chan-
nel — namely it is simulated by simple protocol performed by external observer:
(1) perform general measurement o — >, Vi ngT on the system, (ii) read the re-
sult, say ko, (iii) prepare the system in the state |¢p,). Step (i) destroys quantum
information completely. This is expressed in general property: separable channels
have all capacities Q¢ zero. Surprisingly the statement is not “if and only if”:
there are so-called binding entanglement channels [22, 23] (see Sec. 6.3) that have
Q¢ = 0 though they are not separable.

Ezample 2. Class with mazimal capacity: unitary channels. Let us sup-
pose that Alice and Bob are connected by simple unitary channel ¢ — AY(g) =
UoU't where U is unitary operation. For one qubit U can be the Pauli matrix.
This channel transforms any qubit state into another qubit state. Fidelity of the
transmission without encoding or decoding can be poor. Indeed for two qubit case
we put U equal to the Pauli matrix o, then if Alice sends either of states |0}, |1)
the fidelity is even zero. However, on each pair Bob can perform encoding opera-
tion A’'(-) = UT(-)U “cancelling” the action of the channel and then transmission
is ideal. This is because operation UT is an inverse of U. Thus for global chan-
nel A%” acting on many copies no encoding operation is needed and decoding
operation Ap = A’®" is enough to transmit ideally one qubit per one usage of
channel. This gives all capacities Q¢ (A) equal to unity because of the bound (17)
and d4 = dp = 2 here. We must stress again that usually encoding and decoding
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operations do not have tensor structure unlike Ap = A’®” above. Typically they
would entangle possible input (respectively output) product states.

4. Quantum states and quantum channels: connections

4.1. Mathematical isomorphism and its physical interpretation

Let us consider bipartite state ¢ defined on Hilbert space H = H4 ® Hp
and assume that g4 = I/da (dx = dimHy, X = A, B). The latter means that
left reduced density matrix is maximally mixed. There is one to one correspon-
dence between bipartite states with the latter property and quantum channels A
transforming states on H 4 into states on Hp. This correspondence is given by the

formula [10, 35]
o= [0 AP (18)
with pure state

da—1
. 1
Py = W)Wy |, with [Fy) = N |k | k) (19)
k=0

defined on “symmetric” Hilbert space H4 @ H 4. As in Ref. [38] let us consider the
spectral decomposition of the state g:

dadp
0= Z pre|¥n) (e, (20)
k=1
where [¢) = ch'l;‘o_l Z;lio_l cf]» |©)|7). The operators V;, are defined by their matrix
elements (i|V3|5) = dAcfj and the corresponding map
dadp—1
Ao)y= > pVioV (21)
k=0

on arbitrary state o on Hilbert space H 4.

The following physical interpretation of Eq. (18) within distant labs paradigm
(Sec. 3.1) was provided in Ref. [35]. Let us suppose that Alice and Bob are con-
nected by channel A and suppose that Alice prepares in her lab a pair of quantum
systems or “particles” in joint maximally entangled state |¥,) defined on Hilbert
space Ha ® H4 (both subsystems have the same degrees of freedom). If she sends
one of “particles” to Bob down the channel then the final joint state ¢ (18) shared
by Alice and Bob contains all information about the channel. Let us note that sep-
arable channels (Sec. 3) correspond to separable states while bistochastic channels
correspond to states with both reduced density matrices of state (18) maximally
mixed [39].

Example. The following so-called isotropic state (see [40])

a1
Op :p%—l-(l—p)ﬂ. (22)
A

corresponds to depolarising channel (11) via the isomorphism (18).
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4.2. Quantum teleportation channel

Here we shall consider the class of quantum channels based on gquantum
teleportation discovery [41] (extended to shared mixed states case in Ref. [31]).
Let us suppose that Alice and Bob stay in spatially separated labs and they share
bipartite state ¢ defined on the space Ha ® Hp. Let us suppose that Alice has
third particle defined also with help of space H4/ in unknown state |¢). Let us
suppose that Ha ~ Hp ~ Ha = H i.e. for observers all the particles are of the
same physical kind (like three d4-level atoms etc.). There is the following protocol:

(i) Alice performs joint measurement on both her particles (the one in un-
known state and the member of pair in state g). The measurement can correspond
to any observable of nondegenerate spectrum with eigenvectors being maximally
entangled pure states, i.e. states that have both reduced density matrices maxi-
mally mixed. Let us note that such measurement has d% outcomes (see example
below);

(ii) after the measurement Alice sends the result of her measurement to Bob;

(iii) Bob performs some special operation (depending on Alice’s result) on
his particle (his member of pair in joint state g).

The above quantum operation can be viewed as quantum channel transmit-
ting with some reliability unknown state ¢ to Bob. It has been shown [41] that
if two conditions are satisfied: (a) Alice and Bob share initially pure state maxi-
mally entangled (it can be |¥,) defined by (3)) in place of ¢ (b) Bob’s actions are
some specific unitary operations then the transmission of |¢) is ideal. This means
that then after protocol consisting of three steps above Bob gets his particle to
be just in (still unknown)** state |¢) despite the fact that no quantum system
has been sent from Alice to Bob. Moreover, no information about the state ¢ has
been gained during the game — neither Bob nor Alice knows anything about it.
This surprising phenomenon called quantum teleportation has many unusual ap-
plications in quantum information theory. It can be generalised to include more
complicated Alice and Bob actions. Then the general bound on teleportation with
help of separable states shared is f < 2/(da + 1) [38].

Ezample. One qubit teleportation [41]. Let us suppose that Alice and Bob
are in distant labs each and suppose that they share maximally entangled sin-
glet state ¥y = ¥_ = \/Lg(|0>|1> — |1)]0)). Let us note that this state belongs to
four vector family called Bell basis with other three vectors of the form ¥ =
L (1010) = 1DI1). w2 = S(10}0) +11)[1)), s = J5(10)[1) + [1)[0)). Let us sup-
pose now that Alice has unknown spin—% particle in one qubit state |¢) = a|0)+b|1},
|a|? 4 |b|? = 1. The three particles A’AB (two first A’A belonging to Alice, the
third B to Bob) are in a pure state [|®)(®|]a:ap defined by

**This is related to so-called no-cloning theorem [42, 43] — it can be shown that despite Alice’s
measurement destroys completely state |¢) on her side she still cannot learn anything about the
state from results of the measurement.
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|P)araB = |6)ar|t00)aB- (23)
The essence of the teleportation idea lies in the fact that g4:4p can rewrite the
whole vector in the form

|PYarar = [to)ara(—o0l|d)B) + |¥1)ara(o1|d)B)

+lv2)araloa|9)B) + |[¥3) ara(os]6) ) (24)

with oo = I and Pauli matrices oy = 05, 02 = 0y, 03 = 0,. Now protocol
goes as follows: Alice performs measurement of observable diagonal in Bell basis
[iYara, i =0,1,2,3 on her particles A’A. Let us suppose that she gets result .
Then after her measurement the global state corresponds to

[io)araloio|o)p).- (25)
Let us note that unlike before the experiment Bob’s particle is now completely
uncorrelated with any of Alice’s particles. Then if only Alice calls to Bob and says
that she has got iy he knows that the joint state of three particles corresponds to
(25) and it is enough for him to apply the transformation o, to his particle B to
reproduce |¢) at his site. The latter is justified because one has 02»20 = I indepen-
dently of ig. The corresponding fidelity is ideal. It can be drastically reduced if
in the above protocol instead of maximally entangled state Alice and Bob share
mixed state [31].

Summarising, it is important that if Alice and Bob share maximally entan-
gled state the transmission is ideal. If they share mixed state then fidelity of the
transmission is usually poor (see [38] for details). To avoid, at least partially, the
latter disadvantage the new idea of entanglement distillation has been introduced
in [2]. We shall describe it subsequently.

4.3. Distillation of quantum entanglement

Let Alice and Bob share a large number n of pairs of state, each in the
some mized state ¢ that is weakly entangled. Let us suppose that Alice needs
to teleport some number of unknown qubit states to Bob. Then they both need
to share two-qubit maximally entangled states like singlets ¢¥_. However, they are
given only mixed weakly entangled pairs. How to use them? For some states g there
is a process called entanglement distillation [10, 2]: by means of LOCC operations
(Sec. 3.1) Alice and Bob can get k pairs which are almost in states ¢_. Maximal
rate k/n in the limit of large n and under condition of convergence of output pairs
to states Wy is called entanglement of distillation and denoted by D¢ (o) with C
standing again for special classical resource. One says that Do () is amount of
entanglement one can distil from the state g.

This nontrivial protocol was originally discovered for two-qubit Werner states
[12] equivalent to states (22) with d4 = 2 and p < 2/3.

It must be stressed that during entanglement distillation no physical trans-
mission of quantum particles from Alice to Bob 1s allowed. They can only use pairs
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they share performing local quantum operation (like interactions among particles
located in one lab) and send classical bits according to resource C.

In case of two-qubit g the process can be viewed as, in a sense, concentrating
entanglement from large number of mixed pairs to smaller number of pure states
with additional process of removal of noise represented by mixed character of
initial pairs. Entanglement distillation has various interesting aspects — readers
are referred to review paper [30].

Summarising, within distant labs paradigm, using LOCC operations (with
resource (') and large number n of shared pairs in mixed (but entangled) state
Alice and Bob can achieve approximately k = nD(g) pairs in maximally entangled
two-qubit states.

However, for some states ¢ one has D¢ (g) = 0. Then no entanglement can
be distilled and g is called nondistillable. It has been obvious that all separable
states (see Introduction) have that property. This is, roughly speaking, because
of general physical law saying that LOCC action cannot create entanglement “at
a distance”. The question was whether there are any entangled states that are
nondistillable. A surprising answer will be given in one of next subsections.

Erxample [27] (cf. [26]). We shall briefly describe the simplest distillation
protocol. Let us suppose that Alice and Bob share n two-qubit pairs in state
|®) = «|0)|1) — B]1)|0) with real parameters o > 3 > 0,a? + 32 = 1. Then Alice
performs local filtering operation (see Sec. 2) with Vi = diag[3/e«, 1]. Applying
the formula (10) we see that such operation gives singlet state ¢»_ with probability
p = 2(3?. Thus given any pair from set of given n ones Alice performs local filtering
operation on her particle and calls to Bob informing whether the operation suc-
ceeded (this happens with probability p) or not. If it succeeded then they keep the
pair, otherwise the pair is discarded. Following binary Bernoulli distribution prop-
erties for large n this gives k = pn = 28? pairs in maximally entangled state +_.
Let us note that because only Alice used phone, the communication was one-way.
Thus we have got lower bound for one-way distillable entanglement

D_(Pg) > 23, Py = D) (26)
The above bound and the corresponding protocol can be shown to be not optimal.

Indeed it can be shown that D_,(Ps), D—(Ps), Do.(Ps), Dy(Ps) have the same
value of the von Neumann entropy of partially reduced state Trp(Ps) (see [27]).

5. Applications to quantum channels

It has been realised first in Ref. [10] that entanglement distillation can serve
as an important tool for quantum channels theory. The trick was to combine all
three ideas described above in Secs. 4.1, 4.2, 4.3 as follows. Let us suppose that
Alice and Bob are just in the situation from Sec. 3: they are connected by n
quantum channels A that are noisy, n is large enough and they are allowed to
use resource (' =— « . They can proceed as follows: instead of sending qubits
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directly (that would be harmful to them) Alice and Bob can prepare new channel
with help of A. Alice can prepare n pairs in maximally entangled state P, each.
Then she can send “half” of any of them (one after another) down the same channel
A. According to remark 1 of Sec. 3 the effect is as if we had many channels A%" and
sent one “half” of P, down any of them. Thus, as a result, Alice and Bob share n
quantum states each of the form (18). If the latter is distillable (which can happen
quite often) then they can apply the idea of Sec. 4.3 and distil k = nD(g) two-qubit
maximally entangled states. Finally, Alice can teleport reliably (see Sec. 4.2) to
Bob any k& unknown qubits.

As a result almost ideal (for large n) transmission of & qubits from Alice to
Bob took place. The idea was to turn global noisy channel A®” into almost ideal
teleportation channel and use the latter to send qubits. Highly nontrivial aspect
of the above procedure can be revealed by some simple analysis showing that here
errors that channel would have introduced to transmitted quantum information
have been corrected virtually be fore the information was sent. This is interpreted
as counterfactual error correction (see [1]): we “correct” errors be fore they happen.

Realising that the whole process used only resources allowed to achieve Q¢
(that is local operations and classical communication resource C') and that it may
be not optimal one gets lower bounds for quantum capacities [10]:

De < Q¢, C=—, —, (27)

and, because of @y = Q—, also D < Q.11

Other powerful application of distillation idea to quantum capacities can be
found in [34] where results towards quantum version of second Shannon theorem
has been provided. In particular nontrivial implications of the following conjecture:

D_. > S(es) - S(e) (28)

called “hashing inequality” (cf. [2]) have been proved. In the above gp is Bob
reduced density matrix of shared state ¢ and S stands for von Neumann entropy.

6. Surprising phenomena and related issues

6.1. Bound entanglement phenomenon

The very natural question was: which states are distillable? As we mentioned
above separable states are not because no guantum correlations can be created with
help of classical phone. As for nonseparable (entangled) states the expected answer
was — they should be all distillable. It even has been indeed shown that:

Any entangled two-qubit (or qubit—qutrit) state is two-way distillable [44, 40].

The result required prior research [45, 46] providing efficient criterion decid-
ing whether given state is separable or not. This highly nontrivial problem focusing
much attention is outlined in Appendix B. At the moment only few issues are im-

tt The quantity Dy is exception [34]. We shall not discuss it here.
H Qubit—qutrit system is just 2 ® 3 system, see definition of separability in introduction.
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portant here. Namely if the state ¢ is separable then 1t satisfies positive partial
transpose (PPT) test [45] i.e. the new matrix ¢”® defined by its matrix elements
in product basis

(m(ulle"=]In)|v) = (ml{vleln)|n) (29)
has nonnegative spectrum which is symbolised by the notation ¢7® > 0. The
states that pass the test are called PPT. The states that do not are called NPT,
because spectrum of their partially transposed matrix o7 is not positive. The
operation (29) corresponds simply to transposing indices due to second subsys-
tem. It happens that PPT test is necessary and sufficient [46] for separability of
two-qubit states but this is not so in general [46, 13]. In other words, there exist
entangled states satisfying PPT test. It has been shown that violation of PPT
test 1s necessary for distillability and this leads to so-called bound entanglement
(BE) phenomenon [18]. Namely, somewhat surprisingly, there exist states that are
entangled but nondistillable. For bipartite systems they occur only when dimen-
sions of the Hilbert spaces dg = Ha, dp = Hp satisfy dadp > 6. This amazing
phenomenon focused much attention recently. It represents qualitative [18] and
quantitative irreversibilities [47, 48]. For extensive review see [30]. In the above
context distillable entanglement is called free entanglement. It happens that some
part of entanglement in mixed state is free and the rest is bound [48] though there
are mixed states [49] that contain only free entanglement. All those issues lead to
important thermodynamical analogies [50, 51, 14, 52].

For completeness let us recall the necessary and sufficient condition for dis-
tillability of state ¢ [18]:

A bipartite state p on Hap = Ha ® Hp is distillable if and only if for some
two-dimensional projectors P, () and for some number n, the “two-qubit-like” state
0,(0) =P @ Qu°"P @ Q/Tr[P @ Qo®" P @ @] is entangled i.e. violates PPT test.

This criterion can be modified to more suitable form (see [19, 20]).

Exzample 1. For first physical explicit examples see [13]. Here we shall recall
the following one based on [53, 54]:

(30)

g1 = —

N O O O N O O N
O O O O O N DO = O
O O N OO O O = O O
o O O O O = O N O
N O O O N O O N
O N D RO O O o O
O O e O O O N o O
O = O N O O o O
N O O O N O O N
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written in standard basis of 3® 3 type: |0)]0),|0)|1},]0)|2), |1}]0), ... It is invariant
under PPT operation (29) but cannot be written in the form (43) (see example in
Appendix B).

Ezample 2. This example of bound entangled states on C® @ C? is based
on unextendable product bases [55, 23] that are important for positive maps the-

ory [56]:

AN

OPent =

4

VDY |vi>|vh(i)><vi|<vh(i)|1 . h(i) = 2i mod 5, (31)
=0

where

2

= A

Remark 1. Robustness of entanglement. The above states are singular so

5 5 2

cos (2”’“) 10) + sin (2”’“) I + Mm] )

their properties can strongly depend on possible admixtures that are unavoidable
when we want to prepare system in a given state experimentally. Therefore the
robustness of entanglement and bound entanglement in this context is important
(cf. [25]). In Appendix C we perform elementary analysis of error bar admittable
if one wants to produce entangled and bound entangled state.

Remark 2. Nonadditivity conjecture. Physical effect of activation of bound
entanglement [24] suggested the following conjectures [24, 22]:

Both distillable entanglement D¢ and quantum capacities Q¢ are in general
nonadditive (more precisely — superadditive) functions of quantum state.

In case of quantum channels superadditivity would mean that

Qe © A)> Qe(Ar) + Qo). (33)

We shall come back to the above conjecture subsequently.
6.2. NPT bound entanglement conjecture and s possible implications

The bound entangled phenomenon leads to interesting effects like activation
of bound entanglement [24, 57, 58] or superactivation [59] in multiparticle case.
There are still open problems, one of them is NPT bound entanglement conjecture
formulated in [19, 20].

To describe it let us repeat that PPT property of any entangled states implies
bound entanglement [18]. The converse statement “bound entanglement has PPT
property” (shown to hold for 2 ® n case (see [60])) has been still an open question
in general. It was quite natural to expect its validity because of the relation of
partial transposition to time reversal [61] which could be compatible with the fact
that entanglement distillation is a “counterfactual” error correction ([10, 1], see
Sec. 5).

Those issues stimulated investigation of states that do not have PPT prop-
erty. They are called NPT states (see Sec. 6.1). The problem was translated to
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the question: are all NPT states distillable? As we mentioned above for cases
2® 2, 2® 3 it was true [44, 40], and this was generalised to 2 ® n [60]. But there
are evidences that the statement is not true in general. The problem was reduced
by the following result [40]:

The statement “PPT property is equivalent nondistillability”is true if and
only if 1t 18 true for the Werner states.

The Werner states [12] are d ® d states of the form

2 (34)

9
W(p)z(l—p)d2+dP<+>+p

where P(F) = HETV with identity 7, and V being “flip” operationi.e. Vo¢@¢¥ = v®¢
for any vectors v, ¢. In other words P(+) (P(_)) corresponds to projection onto

d2

the symmetric (antisymmetric) subspace of C¢ @ C¢.

Quite recently some of NPT Werner states has been carefully considered
[19, 20] and they have been shown to be nondistillable in so-called single copy case.
Moreover, it has been also shown [19, 20] that the distillability of the states is at
least very hard if number of state copies increases and local minimum argument
for nondistillability of two copies case has been provided [62]. However, to provide
a full proof of existence of NPT BE was still an open problem. The corresponding

conjecture can be formally written as follows (see [19, 20]):
3(d—1

5(3d=1) (which are

Conjecture. Werner states (34) with parameter % <p<
entangled and NPT) are not distillable.

It has been shown that if the above were true it would have a highly non-
trivial and far-reaching implications concerning distillable entanglement measure
[21] as well as so-called 2-positive maps [20]. Here we shall recall results concerning
distillability [21]:

A. If the conjecture is true then two-way distillable entanglement is non-
additive (possible nonadditivity of D¢ was first conjectured in [24]). This has
been proven [21] to follow from the conjecture by showing that tensor prod-
uct of BE state gpent (31) with W(p.) (for some special parameters p. € [1/2,
3(d — 1)/2(2d — 1)] defined in Ref. [21]) produces distillable state. Thus
D (0pent @ W(ps+)) > 0 which (as D (gpent) = 0) has been pointed out to
produce nonadditivity if only D (W (p.)) = 0 holds.

B. If the conjecture is true then the distillable entanglement D is not convex.
This was again proved in Ref. [21] to be implied by the conjecture. The idea of
the proof is to take 2n copies of unbiased mixtures of two BE composed states
W(p.) ®|0){0], opent ®|1){1| where pure state “ancilla” is on the Alice side. After
Alice’s measurement both Alice and Bob can produce n copies of gpent @ W(py)
which concludes the proof.

One of the main results of this paper is to add another serious consequence
of the conjecture for quantum communication.
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6.3. Binding entanglement channels

Here we shall discuss briefly the issue of binding entanglement channels
[22, 23]. Namely there are channels such that if pair of entangled states is send
down them then the pair is not distillable. However sometimes it contains bound
(nondistillable) entanglement. Such channels have been shown to have zero capac-
1ty @~ which implies that any other capacities for resource ' =, —, ¢ are zero
too (see Sec. 3). Simple mathematical protocol [22] producing BE channel uses
arbitrary bound entangled state ¢ on Ha ® Hp with left reduced density matrix
o4 of full rank. Namely with help of such state one can consider new (also bound
entangled) density matrix

1, _
J = 3(9,41/2 © Ip)o(ex"” @ Ip). (35)

This state has maximally reduced left density matrix ¢4 so one can apply
isomorphism (18). The resulting channel is just some BE channel. This channel is
not separable because then the state (35) were separable. Another idea to provide
BE channel [23] is just “teleport” one subsystem of system in maximally entangled
state with help of shared bound entangled state. This allows to perform action of
BE channel physically.

The peculiarity of BE channel lies in the fact that it contradicts some natural
intuitions of what nonzero capacity of the channel means. Namely it happens that
not only separable channels have capacity zero. This is the reason why BE channels
were first candidates [22] to satisfy superadditivity relation (33).

Example. Using the above method we can “read” BE channel from BE state

(30) with help of the scheme above utilising (35). We get

6 1
AC) = 7ZO+ lop Vo (Moo +00Vao(-)Vao) oy
+0: Via(-)Vi2)o3?], (36)
where Vi = 2|k) (k| + |m)(m| and Pauli-like matrices are o*™ = |k)(m| + |m)(k|.
Thus the above channel is a convex combination of ideal channel Z (with weight
p = 6/21) and other three operations that sum up to another channel with weight
1—p=15/21.

7. Nonadditivity of channel capacities
from some NPT bound entangled states

Here we shall prove the one of the main results of the paper. Let us introduce
two channels

d—1

1 m m

/1(+)(.) = i1 E P|k)(~)P|k) + g O'(xk )Pkm(')PkmU(xk ) (37)
k=0 k<m
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and

Ay = di_l S 01 Pl () P r ) (38)
k<m
with projections Py, = k) (k| + |m){m| and Pauli-type matrices ofm) = |k (m| +
|m) (k| and ™) = i[k)(m|—i|m)(k|.

Using statements from Sec. 4.1 the above channels can be easily checked to
be bistochastic. This is because [Z ® A®](Py) = 2/(d* £ d)P(*) and the latter
has both reduced density matrices maximally mixed.

This allows us to reproduce one parameter bistochastic channels family for
the Werner states (34) with help of isomorphism (18) as follows:

Ap = pAH) 4 (1 — p)A=), (39)
Let us also apply the construction (35), (18) to the PPT BE states gpent (31). This
gives via the isomorphism (18) BE channel Apey: having all quantum capacities
zero. Let us suppose that p, is the parameter for which nonadditivity of D_, holds
(see Sec. 6.2). We have

Observation. If the Werner state W (p.) is NPT bound entangled then
two-way quantum channels capacity Q¢ 1s not additive. In particular, channels
Ap, and Apens satisfy superadditivity relation (33).

Below we shall prove the observation. We have

QC(APent) =0 (40)
for any classical resource C'. Now let us consider sending the maximally entangled
state P, ® Py down the composed channel Apent @ Ap, with p, defined as in
Ref. [21] (see Sec. 6.2). This leads to the composed state ¢ with D () > 0. This
is because with help of local filtering operation (see Sec. 3): @114/2 ® I 1t can be
brought to the state gpent ® W(p.) which has been shown to be distillable [21].
But upper bounds from Sec. 5 imply that Q. (Apens ® Ap,) > D (¢’) > 0. Thus
we have

Qo (Apent ® Ap, ) > 0 (41)
and Q- (Apent) = 0.

Let us suppose now that W(p,) were BE state. Then A,, would be BE
channel because it has been constructed from W(p.) with help of (35). Thus
NPT bound entangled character of W(p.) implies Q¢ (4,,) = 0 which concludes
nonadditivity because of (40), (41). Let us note that here we would have very
strong superadditivity as two zero capacity channels would give together one of
nonzero capacity.

Summarising, if the Werner state W(p.) would be NPT BE then the conjec-
ture (33) were true for C' =«. It seems very probable that using the combination
of techniques of [21] and the above reasoning (applied to one-way distillable en-
tanglement D_,) will lead to nonadditivity if capacity Q— = Q.
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8. Conclusions

Mixed states entanglement is fundamental tool in investigations of “fully”
quantum communication. It is especially useful as far as qualitative problems are
concerned. In particular, it can serve as a resource for quantum data transfer
and this i1s made with help of distillation of quantum entanglement. Genuine irre-
versibility represented by so-called bound entanglement is reflected by existence of
binding entanglement channels. Bound entanglement phenomenon together with
its physical effects led to the conjectures about superadditivity of: (i) two-way
distillable entanglement and (ii) two-way quantum capacity. On the other hand,
the conjecture on so-called NPT bound entanglement has been formulated and
applied to show that in some versions it would lead to superadditivity of (i). Here
we have shown that the conjecture also implies superadditivity of (ii). This was
done with help of binding entanglement channels idea.

On the other hand, we have performed simple analysis of robustness of en-
tanglement and bound entanglement (in sense of possible error bar) using positive
maps. It would be interesting to prepare bound entangled states in lab because
they can be used (with help of teleportation) to produce binding entanglement
channel that (as we have shown) presumably have curious physical property —
superadditivity. All the above depends on validity of the conjecture that the NPT
bound entanglement exists. In any case to prove or disprove this conjecture is
more than desirable.

Author thanks M. Horodecki and R. Horodecki for helpful discussions. The
work is partially supported by the State Committee for Scientific Research, con-
tract No. 2 P03B 103 16, and by the IST project EQUIP, contract
No. IST-1999-11053.

Appendix A — physics of quantum operation

We shall recall in brief how to perform the operation (6) physically [63].
Our aim is to perform operation A’ in case when H4 = Hp = C%. Let us add to
our system defined on H 4 the new system called ancilla with the corresponding
associated Hilbert space H, = ¢!,

We shall first construct some unitary operation U between our system and
ancilla Hiot = Haq @ Ha. Let us take the following operation U on space Hiot =
Ho @Ha = Cm @4 Let us take the following operation:

m

U= 1)0leV. (42)

+=0

This is not unitary as it vanishes on any vector of the form |k)|i) € Hior with

0 < k < m, but on the subspace spanned by the d-element subbasis {|0)]s)}¢=}

it 1s isometry, i.e. it keeps the scalar product between vectors in that subspace.
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In particular, elements of subbasis are mapped into d orthonormal vectors in
Hior. This follows from the identity 1T = |0)(0] ® T implied by property of the
map (8). Operators satisfying (like our matrix U) property XX = P are called
partial isometries.

Now we can write U in the standard basis {|k)|))}, k =0,....m+1, i =
0,...,d in space Hior. Then, because of partial isometry character of U, we con-
clude that it is &’ ®@d’ (d' = (m+1)d) matrix with first d columns orthonormal and
the rest columns vanishing. Because the matrix is squared we can always construct
(in a nonunique way) the rest (d — 1)(m 4 1) columns orthonormal to each other
and to first d columns of U/. From those (d—1)(m+1) columns we can immediately
define the complementary U’ that is partial isometry (like U) but on the subspace
space corresponding to the projector (I — |0){0]) ® I, i.e. it has first d columns
vanishing and other (d — 1)(m + 1) orthonormal already constructed. Then the
new matrix U = U 4+ U’ resulting from adding two previous partial isometries is
squared d’ x d’ matrix with orthonormal columns, hence it is unitary matrix on
Hiot- According to quantum mechanics it can be realised by interaction between
ancilla and our system with the corresponding Hamiltonian. Let us suppose that
our system is in the state g. Then the map (6) can be performed in the following
steps:

(i) prepare ancilla in state |0){0],

(ii) allow for interaction represented by unitary transformation U between
system and ancilla,

(iii) perform on ancilla standard two-output von Neumann measurement
Py = |m){m|, P» = I — P; with postselection “discarding” our system unless
satisfactory result 2 occurs,

(iv) perform partial trace (or “forget” about the ancilla system) getting the
reduced density matrix that describes only system.

This will be ¢’ from (5) we wanted to “produce”. If the operation is just
quantum channel then one omits step (iii) above.

The whole picture can be extended to the case where the final state (after
action of the channel) is of different physical character i.e. the system partially
or completely changes its character during “transmission”. The most elementary
example is the following. Alice sends some photons to Bob, someone captures and
measures photons somewhere in between and sends atoms to Bob instead with
atomic states depending on measurement results on photons. This is just example
of separable channel (see Sec. 3).

Appendix B — separability criteria

Let us recall that there exists the necessary and sufficient condition [44] for
separability. This is based on positive maps theory [64-67, 53]. Namely:

(I) Given mixed state ¢ defined on H4 ® Hp is separable if for any linear,
(i) positive but (ii) not completely positive map A mapping states on Ha onto
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states Hp the new matrix [Z ® A](g) has nonnegative spectrum.* The latter is
written in a symbolic way as

[Z @ Al(e) > 0. (43)

Erxample 1. Positive partial transpose condition due to Peres can be formu-
lated as (43) with transposition operation A = T' that transposes (in usual sense)
any matrix written in some fixed basis. This is because [64—66, 53] transposition
map is positive and one has ¢’2 = [Z @ T](g) by the very definition.

An important result that separability PPT test is not only necessary [45]
but also sufficient [46] for two qubits and so-called qubit—qutrit system is based
on very special property (called decomposability) [64-67, 53] of positive maps on
low dimensional matrices. The failure of that property implies that for higher
dimensional systems PPT is only necessary condition of separability [46, 13].

FEzample 2. The positive map [67] (transforming matrices on C3 onto matri-
ces on the same space)

ay; aiz @13 ayl + ass —a12 —a13
A a1 G2 G423 = —a21 ass + ai —a23 (44)
as] asz ass —as1 —as2 ass + aso

can be applied to reveal entanglement of state (30). Indeed the resulting matrix
[T @ A)(01) has negative eigenvalue —1.

There is another characterisation of separability. Let the observable W be
called entanglement witness [56, 46] if (i) its mean value on any product state is
nonnegative i.e. Tr(Wle, f)(e, f|) > 0, (ii) it has negative mean value on some

state o, 1.e.

Tr(We) < 0. (45)

Let us note that because of (i) ¢ has to be entangled. We say that W reveals
entanglement of g. Now the second characterisation says [46, 56].
(IT) Given mixed state ¢ defined on Ha ® Hp is separable if

Tr(We) =2 0 (46)

for all entanglement witnesses. The theory of entanglement witnesses is intensively
investigated recently. They allowed to reduce new so-called nondecomposable pos-
itive maps ([56] and references therein). The nontrivial and technical results form
general description of convex subsets of quantum states. In particular, it has been
shown that they can be optimised (to reveal in a sense as much entanglement as
possible) and applications to multiparticle cases is extensively developed. We shall
not discuss those topics here (for synthetic description see [68]).

*In original paper [46] it was defined without (ii) for historical reasons. In practice completely
positive maps were of course always excluded as their presence is redundant — they define trivial
separability conditions.
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Example 3. The “flip” or “swap” operator V on C? ©® C? is entanglement
witness because (see [12]): (1) Tr(V|é)(¢] @ [¥){¥]) = [o|¥))? > 0 and
(i) Tr(V|g_){¥-|) = =1 < 0 because V]y_) = —ip_ (singlet is antisymmetric).
Let us note however that V' does not reveal entanglement any of highly entangled
triplet states (like |¢4) = \/Lg(|0>|0> + |1)|1)) because they are all symmetric with
respect to permutation (see [69]).

There is one to one correspondence between entanglement witnesses W
and positive but not completely positive operators A which is given by so-called
Jamiotkowski isomorphism [65]:

W= (2o APy, (47)

where P, is a projector corresponding to the vector [V} ) = ?:mlHA |k) ® k). The
map AI/V stands for hermitian conjugate of map A .

Erample 4 [69]. One has V = [Z @ T](P4) which means, according to (47)
that transposition map corresponds to “flip” operator. Here we see remarkable
practical difference between (I) and (II): for two qubits the map 7 @ T' serves as
necessary and sufficient separability condition while the corresponding witness does
not — for instance it does not reveal entanglement of triplets. The property that
single positive map condition reveals more entanglement than the corresponding
(in sense of (47)) witness is even true in general (see [68]).

The condition (I) can be further restricted [70] to such linear, positive (but
not completely positive) A’s that are identity preserving, i.e. A(I4) = Ip where
I4 (Ip) is simply identity matrix on H4 (Hp). This can be summarised in the
following statement: if positive map A reveals entanglement of ¢ then some new
identity preserving map A also does.

Appendix C — positive maps and robustness of entanglement

Here we shall provide some simple estimations’ of sufficient error bar that
still allows state to be entangled (or bound entangled). Let us suppose that we are
able to produce some entangled (or bound entangled) ¢ of d®d type with error A.
This means that instead of ¢ our apparatus produces some (unknown) ¢’ such that
[le — ¢'|] < A with some norm || - || measuring distance between two states. What
can be maximal delta such that g is still entangled (or bound entangled)? Let us
note that it would be interesting to produce bound entanglement in lab because
from them it is possible to produce physically [23] binding entanglement channels
that are conjectured to be nonadditive in general.

We have two simple observations:

e Let us suppose that minimal eingenvalue of PPT state ¢ is A;. Then the
new state ¢’ = ac+(1—a)o (0 < a < 1)is PPT for o < g = 22_|_—>‘>:*': and arbitrary
state o.

In some form presented in [71], cf. also [25] especially for general observations on this subject.
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e Let us suppose that [Z ® A](g) is not positive and has minimal eigen-
value —A < 0, so g is entangled. Then the new state ¢/ = ac + (1 — a)g is
entangled and has [Z ® A](¢') not positive for & < a3 = A/(A + a) where ¢ =
maxp, lIZ & AJ(Po)lloe with norm || X || = maxyayyo [1X16)]|. Here [[lo)]] =
[{¢|¢)|?. Let us note that a < d||[Z @ A](Py)]|.

Therefore if ¢ is PPT and violates (43) then ¢’ has also both properties for
@ < ag = min(ay, az). This is important if we would like to produce PPT states
that are entangled.

Let us note that above we have considered three sets: S;, S5, S3 which
corresponds to entangled states;, PPT states and intersection of the two latter
sets.

Indeed one has the following property: if ¢ € S, and o < oy (for k = 2, 3)
or a < oy (for k = 1), then any new density matrix of the form ¢/ = ac+ (1 —a)p
(o arbitrary) also satisfies ¢’ € 5.

Let us consider now state g of full rank. Let us denote set of all density
matrices by P with interior int? and boundary 9P. Any full rank state belongs to
int? and can be reproduced by ¢’ = ac+ (1 —a)p for some o € 9P. From that we
get by immediate estimates that if ||o—¢'|| < A with error A < «f, mingesp ||o—0o||
(again for £ = 2, 3) or A < ay, (for £ = 1) then ¢ € Sp. Thus error bar A
can be bounded from above by aj minycsp ||o — o||. Let us note that we have
had the norm unspecified. If we put the trace norm ||A]]; = Tr(]A|) then we
see that mingesp ||o — || is just the distance of vector p = [p1,...,pn] (defined
by the spectrum {p;}?_; of g) to the boundary of n-dimensional simplex where
the distance on simplex is simply measured d(p, p’) = >, [pi — p}|. The latter
follows from inequality saying that for any states g, o' with spectra p, p’ one has
[le— ¢'|| > d(p, P') (see lemma 1.7, p. 22 of Ref. [72]).

The problem is that in the above we need states of full rank while most
popular examples of BE states are “edge” states (see [68]) that are singular and
have Ay = 0. However, one can admix some full rank state (like maximally mixed
one I4/da). Then the procedure outlined above can be applied to give nonzero
error A allowed.
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