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Th e ext incti on paradox , the di˜erence of classical and quantu m scat -
terin g cross- sections for the scattering of particles by a rigid sphere ( ¥ Q =

2 ¤ a
2

= 2¥
C for k a ƒ 1 ), is analy zed in a simpler 2D model of a rigid cylin-

drical potential . Rigorous solutions of the Schr �odinger equation for particle
b eams, includi ng also Ùnite w idth b eams, are deri ved and employed in the

description of the scattering pro cess. T he scattering particle Ûuxes, with a
thorough treatment of the forw ard directions , are b eing studied. I t is pointed
out that for w ide beams ( w ƒ a ) the scattered Ûux can reach the value de-
termined by the quantum theory , pro vided that it is measured at distances

R ƒ w a Ñ . Mo derately narrow beams (1 § w § a ) behave as classica l tra-
j ectories, and their scattering can be describ ed in classica l terms. T hus, the
classical limit of quantum scattering requires not only that the de Broglie

w avelength ÑB is much smaller than the size of the scatterer ( a ƒ ÑB ) ,
but also that the transverse width of beams of de Broglie ' s w aves is small,
w § a .

PACS numb ers: 32.80.C y, 42.25.Fx, 61.10.Dp

1. I n t rod uct io n

Al most al l text books on quantum m echanics, e.g. [1{ 3], as wel l as the scat-
teri ng theo ry, e.g. [4, 5], di scuss the scatteri ng of a parti cle by an impenetra ble
sphere and show tha t for large parti cle mom enta k a ƒ 1 the cross-secti on is twi ce
i ts geom etri cal cross-section area ¤ a 2 . For the Ùrst ti m e thi s result has been ob-
ta ined by Ma ssey and Mo hr [6]. The condi ti on of large parti cle mom enta m eans
tha t the de Bro gl ie wavel ength Ñ i s much smal ler tha n the radius of the scatterer
a . Thi s is considered as the necessary condi ti on for the classical l imit of quantum
m echani cs, so, the above resul t seems paradoxica l . Theref ore, i t is referred to as
the \ exti ncti on paradox" .

A sim i lar e˜ect exists also for the scatteri ng of electrom agneti c wa ves by a
conducti ng sphere in the l im it of short wa velength, Ñ § a [7].
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The e˜ect has been interpreted as caused by the interf erence of the wa ves
di ˜ra cted and passing near the sharp bounda ry of a scatteri ng potenti al . It is be-
l ieved tha t f or a di ˜used bounda ry the cross-section in the l imi t k a ƒ 1 should
m atch the classical value; however, thi s assumpti on sti l l needs a quanti ta tiv e ver-
iÙcati on. In thi s discussion, whi ch is again devoted to a ri gid boundary scatterer
m odel , a more careful trea tm ent is given to the descripti on of inci dent beam s of a
Ùnite wi dth and to the determ inati on of parti cle Ûux in the di recti ons overl apping
wi th the inci dent beam .

2. C l assi cal an d qu an t u m t w o-d im ens io nal scat t er ing
by a p er fect l y r eÛect i ng cyl ind er

T o contri bute to thi s di scussion let us consider an exactl y solvabl e, in the
cl assical and the quantum theo ries, scatteri ng m odel . The m odel consists of a hard,
perfectl y reÛecting cyl inder wi th incident parti cles perpendicul ar to and uni form
along the cyl inder. In thi s conÙgurati on al l dyna mical equati ons, either the classical
equati ons of moti on, or the Schr�odi nger equati on in the quantum case, reduce to
the two- dimensional pro blems tha t can be solved exactl y.

The deÙniti on and descripti on of scatteri ng in both theori es are di ˜erent. In
the classical picture the tra jectories of scattered or deÛected parti cles can be easily
di stinguished from tho se non-scattered. The scatteri ng angle ¢ of each inci dent
parti cl e depends onl y on the impact parameter. W i thi n the quantum mechanical
appro ach wave f uncti ons give only stati stical inf orm ati on about scatteri ng of an
ensemble of the parti cles. One deÙnitel y cannot determ ine whether a parti cul ar
parti cl e is deÛected and scattered. There is no relati on between the scatteri ng
angle and the impact parameter, as thi s param eter is not determ ined. On the
other hand, the quantum descripti on of scatteri ng are very of ten given in term s of
phase shifts, whi ch are not deÙned and present in the classical theori es. Theref ore,
i t is ra ther di£ cult to com pare the classical and the quantum scatteri ng theo ri es as
both theo ri es have di ˜erent noti ons of the scatteri ng and describe i t usi ng di ˜erent
term s and variables.

Attem pti ng to make a compari son of both theori es we may Ùrst ask two
questi ons:

1) is the l imi t of de Bro gl ie' s wa velength ÑB § a the su£ cient condi ti on for
the classical scatteri ng?

2) what condi ti ons are requi red for the observati on of the quantum scatter-
ing?

T o answer these questi ons and to relate the quantum and the classical the-
ori es let us consi der an exactl y solubl e in both theori es two- dimensional m odel
of the scatteri ng of a parti cles by a 2D cyl indri cal potenti al inÙnite step (ri gid
cyl inder) of radi us a .

As i t is well kno wn, the scatteri ng of a plane wa ve by a rigid sphere can
be also solved exactl y [1{ 5]. The hard cyl inder m odel has been chosen because
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i t is simpl er and the descripti on of conÙned and displ aced beam s is easier tha n
for spheres. Assum ing tha t the inci dent beam s are uni form along the cyl inder the
m odel can be form ul ated as a two- dimensional pro blem.

2.1. Classical scatter ing

For a hard cyl inder scatterer in the classical m echani cs, sketched in Fi g. 1,
onl y the reÛection law, i .e. the inversi on of the norm al component of vel ocity at
the moment of coll ision is necessary to determ ine a dependence of the scatteri ng
angle ¢ on the im pact param eter £ :

Fig. 1. Particle traj ectory in classical scattering from a rigid cylinder.

¢ = ¤ À 2 arcsin £ =a ;

leading to the di ˜erenti al cross-secti on

d¥ C

d¢
=

a

2
sin

¢

2
: (1)

Thus, only the parti cl escom ing wi th j £ j < a are scattered and the to tal cross-section is

¥ C
0 =

Z
¤

À ¤

d¥ C

d¢
d¢ = 2 a: (2)

2.2. Quant um scatt er ing

The quantum descripti on of the scatteri ng can be extra cted from the sta-
ti onary wa ve functi ons sati sfyi ng the ti m e independent Schr�odinger equati on. For
inci dent parti cles propagati ng to ward a scatterer placed at the ori gin of the co-
ordi nate system along the di recti on k̂( ˜ ) = f cos˜ ; sin ˜ ; 0 g and described by the
correspondi ng plane wa ve, the tota l wave functi on, sati sfyi ng the necessary bound-
ary condi ti on ˆ ( a ) = 0 ; i s

ˆ T ( ) = ˆ + ˆ = e À i e e
J ( k a )

H ( k a )
H ( k r ) ; (3)
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where J n and H
( 1 )
n are the Bessel and Hankel functi ons of order n ; they can be

computed using Bessel' s functi ons l ibra ries. Al tho ugh the sum incl udes the inÙni te
num ber of term s, when a i s Ùnite, onl y the Ùnite numb er of term s are necessary
to reach the requi red accuracy. Fi gures 2a and b i l lustra te the m agnitude of the
parti al wave am pl i tudes and the reached accuracy of bounda ry condi ti on for the
scatterer of radi us a = 2 5 (a l l sizes and di stances are given in the de Bro gl ie
wa vel ength uni t). T aki ng into account 2 È 2 2 0 parti al wa ves the wa ve functi on
at r = a i s of the order of ¤ 1 0 À 1 3 and the correspondi ng wave f uncti on can be
considered to be exact.

Fig. 2. (a) Magnitud e of partial w ave expansion coe£cients, (b) accuracy in the ful-

Ùllment of the b oundary condition, a = 25 Ñ .

Kno wi ng the inci dent, scattered, and to tal wave functi ons we can calcul ate
the corresp ondi ng parti cle currents

J Q ( r ) =
ñh

m
< eˆ ( ) i r ˆ ( ) ; (4)

and the radi al Ûuxes

F ( r ; ¢ ) =
0

J ( r ; ¢ )d¢ ; (5)

where Q stands for f I, S, T g depending whether one ta kes ei ther the inci dent or
the scattered part or the to ta l wa ve functi on.

An exam ple of the radial com ponents of the currents and Ûuxes is shown
in Fi gs. 3a and b. W hi le at thi s distance J vani shes in the forwa rd di recti ons
¢ < 1 0 (whi ch corresponds to a shadow behind the scatterer) i t oscil lates around
J wi th increasing ¢ - frequency and decreasing am pl i tude. The scattered current
J i s strongly peaked in the forwa rd di recti ons whi le beyond thi s forwa rd sector
i t rem ains rather smal l .

The currents J and J integrated over al l angles i.e. the Ûuxes F ( ¤ ) and
F ( ¤ ) vanish in agreem ent wi th the uni ta ry properti es of the wa ve functi on. Onl y
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Fig. 3. (a) Incident, scattered and total radial currents for the plane w ave scattering

as functions of the scattering angle ˚ . (b) The same for Ûuxes. F and J are in arbitrary

units.

the scattered current J r
S integ rated over al l angles, i .e. F r

S ( ¤ ) , is non-vanishi ng.
It is thi s object tha t is used to estimate and evaluate the intera cti on between the
inci dent parti cl es and the ta rget parti cle causi ng scatteri ng.

An im porta nt pro perty of the scatteri ng process is characteri zed by a di ˜er-
enti al cross-secti on

˚
d¥

d¢

Ç

/ r J r
S ; (6)

and a to ta l cross-secti on

¥ =
d¥

d¢
d¢ : (7)

W hen the above deÙniti ons are appl ied to the scattered part of the wa ve functi on
(3), in the l imi t k a ƒ 1 we obta in

¥ ! 4 a; (8)

so we have ¥ = 2¥ .
The above procedure summ arizes the basic features of the quantum me-

chani cal deri vati on of the param eter kno wn as the scatteri ng cross-secti on. Thi s
pro cedure can be found in al l textb ooks on the quantum m echani cs. It is clear,
sim ple and leads to the obj ect havi ng m any interesti ng and useful pro perti es,
e.g.: no interf erences between di ˜erent parti al waves contri buti ons in the to ta l
cro ss-secti on, a sim ple form of the opti cal theo rem tha t relates ¥ wi th pro perti es
of ˆ in the forwa rd di recti on. However, the usage of J ra isessom e questi ons.

Ca n ( ) always represent a Ûux of parti cles? The functi on ˆ ( ) is onl y
a part of the quantum wave functi on. Ca n the Born interpreta ti on of the wa ve
functi on wi th £ = ˆ ˆ trea ted as the density of parti cles be extended to the part
of the wa ve functi on, £ = ˆ ˆ ?
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W ithi n the ortho dox form ul atio n of the quantum m echanics the process of
scatteri ng should be described by the m easura ble quanti ti es and such are tho se
expressed by ˆ I and ˆ T , i .e. J I and J T . Both quanti ti es represent the true parti cle
wa ve f uncti ons givi ng the true parti cle densiti es and currents. W hi le ˆ I and J I

ref er to parti cle beam s wi tho ut any scatterer (or scatterer removed) then wi th the
scatterer presence the wa ve functi on is di ˜erent and is described by ˆ T determ ining
J T . In the fol lowing i t is shown how the above pro gram can be real ized. Before
thi s wi l l be done let us point out two di£ cul ti es in operati ng wi th J .

Fi rstl y, as can be seen in Fi g. 3 the current J r ; ¢ i s a rapi dly varyi ng
functi on of ¢ , and such rapid variati ons m ay be di£ cul t for m easurem ents.

Secondl y, we can recal l an indep endent descripti on and vi sualizati on of the
scatteri ng, proposed by Hi rschfelder et al . [8], given in term s of Ûow l ines, whi ch
are the l ines ta ngent to the current Ùeld . In the case of electro dyna m ics
the Ûow l ines are ta ngent to the Poyn ting Ùeld whi ch has been recentl y discussed
in [9]. The Ûow l ines can be obta ined by solvi ng a set of the di ˜erenti a l equati ons

d
d§

§ : (9)

Solvi ng thi s set of equati ons wi th the help of any Runge{ Kutta typ e m etho ds, wi th
the ini ti al data , the integ rated Ûow l ines can be found. Such Ûow l ines,
correspondi ng to the scatteri ng by the hard cyl inder of radi us a , are shown
in Fi g. 4. The inci dent parti cles are com ing from the left side where far away the

Ûow is uni form and the Ûow l ines are para l lel . Sam pl ing thi s Ûow Ùeld at equal
spacing the Ûuxes embra ced between two consecuti ve l ines are equal . The parti cles
whi ch are overÛowing the scatterer leave a wake, void tra ck vi sible as a shadow
behind the scatterer. The Ûow lines representi ng the integ rated soluti ons of the
di ˜erenti al equati ons can nei ther intersect nor spli t. It is puzzl ing tha t these Ûow
l ines do not show any large angle scatteri ngs. Tha t is in a com plete disagreement
wi th our expectati ons and observati ons.

T o get a consi stent descripti on of scatteri ng the incident uni form Ûux of
parti cl es represented by the plane wave m ust be replaced by the parti cle beam s
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havi ng a Ùnite tra nsverse wi dth and represented by the appro pri ate wa vefuncti on.
In fact, al l scatteri ng experim ents are perform ed wi th Ùnite wi dth beam s. Outsi de
the inci dent beams we have

ˆ S = ˆ T ; and J S = J T ;

so the di ˜erenti al cross-secti on f orm ula, Eq. (6), ra isesno questions i f it is used for
the parti cles outsi de the inci dent beam . However, deÙning the to ta l cro ss-section
¥ 0 , Eq. (7), thro ugh the integ rati on over al l the scatteri ng angles the integra l
incl udes also the di sputed sector. One may hope tha t thi s di sputed contri buti on
is negl igible i f the scattered parti cles are observed at su£ ci entl y large di stances
from the scatterer. In the fol lowi ng we investigate thi s assumpti on quanti ta ti vely.

3 . G au ssi an b eam s scat t er in g

The wa ve functi on given by Eq. (3) corresponds to the inci dent pl ane wa ve
pro pagati ng at an angle ˜ wi th respect to the x -axi s. Superposing the wave func-
ti ons wi th di ˜erent angles ˜ wave functi ons for Ùnite wi dth beams can be found.

Thus, the inci dent pl ane wa ve m ust be repl aced by

ei kk ( ˜ ) Â = d ˜ e ( ) ( ) P ( ˜ ) ; (10)

whi le in the scattered part of the wave functi on the factor e must be repl aced by

e = d ˜ e e ( ) P ( ˜ ) ; (11)

where for a Gaussian beam model the angul ar distri buti on functi on

P ( ˜ ) =
w

¤
e ;

and w i s a param eter determ ining the angular spread of the inci dent beam , as well
as i ts spati al wi dth, whi le 0 determ ines the positi on of the Gaussian beam wa ist.

Thi s form of the inci dent beam wave functi on is not very convenient in any
further com puta ti ons because i t requi res the integ rati on at each point .

It is worth pointi ng out tha t thi s inconveni ence concerns the inci dent beam
onl y. The scattered part of the wa ve functi on requi res the m odi Ùed, accordi ng to
Eq. (11), parti al wave expa nsion coe£ cients. Ho wever, al l these coe£ cients, and
theref ore integ rati ons, have to be com puted only once.

T o avoid probl ems intro duced by the above integ rati ons two appro xi matio ns
can be pro posed. In the Ùrst one, the integ ra ls are repl aced by the sums over the
di screte plane waves,

d˜ P ( ˜ ) . . . P ( ˜ ) . . .

The second appro xi ma ti on is valid f or beam s wi th a smal l angular spread, and
theref ore for ra ther wi der beams, w 1 . For these beam s ( ˜ ) can be appro xi -
m ated by the lowest order term s ( ˜ ) k 1 ˜ 2 =2 ; ˜ ; 0 and al l the necessary
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integ rati ons wi th P ( ˜ ) can be done analyti cally. Thus we get, for the f reely prop-
agati ng incident wav e,

ˆ I ( x ; y ) ¤

2 w
p

4 w 2 + 2ik (x À x 0 )
eik ( x À x 0 ) exp

ç

À

k 2 ( y À y 0 )2

4 w 2 + 2ik (x À x 0 )

Ñ

; (12)

and for the m odi Ùcati on factors for the parti al wave expansion coe£ cients,

h e e ( )
i ¤

2 w
p

4 w 2
À 2ik x 0

e exp À

( n + k y 0 ) 2

4 w 2
À 2ik x 0

: (13)

These appro xi m atio ns intro duce some errors in the soluti ons of the Schr�odin-
ger equati on. The Ùrst appro xi m atio n, tho ugh sti l l keepi ng the bounda ry condi -
ti ons ful Ùlled, intro duces spuri ous \ ghost" beam s tha t propagate in the same di -
recti on as the beam , and are repeated periodi cal ly along the ortho gonal di recti on.
The freely propagati ng beam s in the second appro xi m ati on are not exact soluti ons
of the Schr�odi nger equati on, so the ful l wa ve functi ons cannot be claimed to be
exact. Neverthel ess, thei r accuracy can be very good, parti cul arly for the wi de
beam s.

In Fi g. 5 the Ûow lines for the scattered inci dent beam of Ùnite wi dth are
shown. In thi s case there is also the shadow region behind the scatterer ; however,
there are the Ûow l ines representi ng large angle scatteri ngs. These large angle scat-
teri ng l ines are connected wi th the periphera l l ines in the wi ngs of the inci dent
beam . Thi s property is com pletel y di ˜erent from tha t for the classical tra jecto-
ri es. Cl assical ly, the incident parti cles movi ng wi th smal ler im pact param eter are
m ore deÛected. The Ûow l ines intro duced in thi s di scussion are i l lustra ti ng global
pro perti es of the wave soluti ons of the scatteri ng probl em.
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Fig. 6. Density plots for modulus of the currents: (a) incident ( j J I j ), (b) scattered

( j J S j ) ; ( c) total ( j J T j ) as functions of the x À y coordinates (a = 1 0 ; w = 60 ).

Fig. 7. Similar as in Fig. 6, w ith faster spreadin g of the scattered wa ve function, over

a longer distance (a = 5 ; w = 100 ).

Fi gures 6 and 7 show the density pl ots representi ng the m agni tudes of the
di scussed currents: incident j J I ( ) j (to p Ùgures), scattered accordi ng to the scat-
tered part of the wa ve functi on j ( ) j (m iddl e Ùgures) and scattered accordi ng
to the to ta l wave functi on j ( ) j (botto m Ùgures).
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As i t is seen, the scatteri ng current computed accordi ng to the scatteri ng
part of the wave functi on is dom inated by a very strong peak in the forwa rd di -
recti on, whi le the scatteri ng current beyond thi s forwa rd sector is hardl y vi sibl e.
Ho wever, thi s huge Ûux in the forwa rd di recti on, when i t overl aps wi th the inci dent
beam , does not represent any Ûux of parti cles, and is not a measurable quanti ty .
The scattered part of the wa ve functi on is onl y a subsidi ary functi on tha t can
be com puted and used to Ùnd the com plete wa ve functi on. As the botto m Ùgures
show, these big scattered parts of the wa ve f uncti ons contri bute to the com plete
shadows just behind the scatterers . These shadow regions, in whi ch no parti cles
can be detected, are surro unded by a tra nsiti on region where the parti cl e cur-
rents exhi bi t strong tra nsverse m odul ati ons. These oscil lati ons appear on a screen
pl aced across the beam as di ˜ra cti on fringes. As the distance from the scatterer,
R , increases the scattered part decreases (due to ¿ 1 =

p

r dependence of the Ha n-
kel f uncti ons on r ), and in the shadow behind the scatterer a bri ght smal l spot,
di scovered and cal led at the beginni ngs of the di ˜ra cti on theo ry a Poisson spot,
app ears. Up on further increase in R the centra l Poisson spot is growi ng whi le the
di ˜ra cti on fri nges seen across the inci dent beam are disappearing.

The dependence of the currents J I , J S , and J T on ¢ i s shown in Fi g. 8, in
log{ log plot in Fi g. 8a, whi le the relevant integ rated scattered Ûuxes are shown in
Fi g. 8b. These plots are, in some sense, analogical to tho se presented in
Fi gs. 3a, b. D ue to the Ùnite wi dth of the inci dent beam the m ost of rapi d oscil-
lati ons of J T at large scatteri ng angles have been removed. Less rapid oscil lati ons
tha t are left represent speciÙc properti es of the scatteri ng kno wn as the f orwa rd
di ˜ra cti on peaks. These f orwa rd di ˜ra cti on peaks are observed not onl y in the op-
ti cal dom ains but also, for exampl e, in high energy elasti c col l isions of elementa ry
parti cl es, see e.g. [10].

In thi s di scussion the scatteri ng was deÙned as a pro cess in whi ch the im -
pi nging parti cles are deÛected and rem oved from the inci dent beam. T o evaluate
quanti ta ti vely tho se parti cl es i t is necessary to specif y the inci dent beam in a
m ore preci se way. In parti cul ar, i t is necessary to determ ine a tra nsverse extensi on
and cross-section of the inci dent beam . In thi s di scussion i t has been assumed
tha t the tra nsverse extensi on, y B , of the incident beam, centered along the x axi s,
dependent on the positi on along the beam x , is determ ined by

j J I ( x ; y B ) j = j J I ( x ; 0 ) j =1 0 0 0 :

Thi s deÙniti on of the beam extensi on is som ehow arbi tra ry; but, as wi l l be shown,
smal l changes in the estim ati on of the beam extensi on do not cause any signi Ùcant
e˜ects.

The extensi on of the beam , at the di stance R 0 = 3 0 0 0 from the scatterer, is
shown in Fi gs. 8a and b by the dotted verti cal l ines placed at ¢ B = arcsiny B =R 0 .
As i t is seen, the scattered current represented by J i s noti ceable only insi de the
inci dent beam for ¢ < ¢ , but there, accordi ng to the present di scussion, J does
not represent any parti cl e current. Beyo nd thi s sector, f or ¢ < ¢ < ¤ À ¢ the
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Fig. 8. (a) I ncident, scattered and total radial currents for a beam w ave scattering

as functions of the scattering angle ˚ . (b) Scattered Ûux and the di˜erence of incident

and total Ûuxes as functions of ˚ . Measured scattered Ûux is deÙned either as F 0

SC =

F S ( ¤ ) À F S ( ¢ B ) or F
00

SC = F I ( ¢ B ) À F T ( ¢ B ) . F and J are in arbitrary units.

scattered current J S ( ¢ ) coinci des wi th the true current J T ( ¢ ) determ ined by the
to ta l wa ve functi on.

T o account the Ûux of parti cles rem oved from the inci dent beam one can
ei ther integrate the parti cle current outsi de tha t beam ,

F 0

SC ( R ) = F ( R ; ¤ ) F ( R ; ¢ );

or Ùnd the change of the parti cle Ûux inside the inci dent beam,

F ( R ) = F ( R ; ¢ ) F ( R ; ¢ ) :

Fi gure 8b shows F ( R ; ¢ ) and F ( R ; ¢ ) F ( R ; ¢ ) in the enti re range0 ¢ ¤ .
As i t app ears from thi s pi cture, the two ways of calcul ati on of the scattered Ûuxes
give the sam e values, i .e., F ( R ) = F ( R ) .

The Ûux of parti cles scattered o˜ the beam and detected as the scattered
parti cl es is equal to the reducti on of Ûux of the inci dent beam measured across
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i ts cross-secti on. Thi s property can be identi Ùed wi th the opti cal theorem for the
Ùnite wi dth beam s. It does not depend on the preci se deÙniti on and the value
of the extensi on param eter for the inci dent beam . The curves showi ng F S (R 0 ; ¢ )

and F I ( R 0 ; ¢ ) À F T ( R 0 ; ¢ ) are m irror- l ike im ages in the hori zonta l l ine passing
thro ugh thei r point of intersecti on, for ¢ greater tha n certa in cri ti cal angle smal ler
tha n ¢ B .

Using these deÙniti ons i t is possibl e to determ ine how m uch the scatteri ng
Ûux determ ined accordi ng to the wa ve or the quantum theo ry di ˜ers from the
correspondi ng cl assical scatteri ng Ûux. A relevant param eter ñ is

ñ =
F

Q
SC ( R 0 )

F C
SC

=
2 F

Q
SC ( R 0 )

F S ( R 0 ; ¤ )
: (14)

The forwa rd scattered beam at several di stances R is shown in Fi g. 9. It is
characteri sti c how the ini ti al rapid di ˜ra cti on fri nges, accompany ing the shadow
behind the scatterer , are vanishing, and the ti ny Poisson spot tha t emerged in the
shadow, grows and ends as the Ùnal beam . Its asympto ti c shape resembles the
attenua ted inci dent Gaussian beam . The sixth graph of thi s Ùgure is plotted at
a distance at whi ch a freely pro pagati ng Gaussian beam is natura l ly spread, due
to di ˜ra cti on, lowering its centra l intensi ty (no ti ce the rescaled axes of thi s plot).

Fig. 9. Forward particle currents distribu tio ns at increasing distances from the scat-

terer. is the ratio of quantum and classical scattering Ûuxes ( ). and

are in arbitrary units.
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The attenua ted asym pto ti c beam experiences the sam e spreading. The remaini ng
part of the beam can be recovered in the scattered parti cles outsi de the inci dent
beam . It is worth pointi ng out tha t for increa sing R the scattered Ûux and the
associ ated param eter ñ i s also growi ng, reachi ng f or the inci dent beam (w = 2 0 0 )
and scatterer radi us a = 1 0 the Ùnal v alue ñ = 1 : 5 . Further increase in R causes
a proporti onal l inear spreadi ng of the incident and the scattered forwa rd beam
(no ti ce the change of uni ts in the last plot).

Simi lar e˜ects are shown in Fi g. 10, for a wi der incident beam (w = 1 0 0 0 ).
In thi s case, the asym pto ti c distance above whi ch the angular scatteri ng pattern
does not change is larger and the Ùnal v alue ñ = 1 : 8 1 .

Fig. 10. (a) T he same as in Fig. 9 for a w ider b eam, (b) scattered Ûuxes distribu-

tions and angular positions of the incide nt beam at various distances from the scatterer

( a = 10 ; w = 1000 ). ¢ is in degrees, F in arbitrary units. F , J and y are in arbitrary

units.

The botto m parts of these Ùgures show how for increasing R the angular
wi dth of the beam bounda ry is decreasing and consequentl y shifti ng to the left.
Ho wever, the angular wi dth of the scattered beam is not vanishi ng. Otherwi se
our \ opti cal theorem " woul d be vi olated. It rem ains Ùnite, of the order of ¿ 1 =w ,
and wi thi n the range of the val idit y of the sym metry property for the functi ons
F S ( R 0 ; ¢ ) and F I ( R 0 ; ¢ ) À F T ( R 0 ; ¢ ) .

Co nsidering the resul ts presented in Fi gs. 9 and 10 i t can be said tha t the
cl assical scattered Ûux can be exceeded by the correspondi ng wave or the quantum
Ûux when the wi dth of the inci dent beam is greater tha n the di ameter of the
scatterer . In addi ti on, the detecti on shoul d be done su£ ci entl y far away from the
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scatterer , where the forwa rd scattered beam shows no di ˜ra cti on fri nges and i ts
shape resembles a distri buti on of the freely propagati ng inci dent beam at tha t
pl ace, reduced in i ts intensi ty due to scatteri ng. For very wi de beams, in the l im it
w ! 1 , the wave scatteri ng facto r ñ ! 2 , and thus thi s scatteri ng is very much
di ˜erent from the classical one. Ho wever, to observe these e˜ects the m easurem ent
m ust be m ade su£ cientl y far away the scatterer, at distances R > R as y . W hen
w ! 1 then R asy ! 1 shows tha t thi s l imi ting value ñ = 2 m ay only be detecte d
asym pto ti cally.

Ano ther di £ cul ty wi th the wi de beam m easurements in the forwa rd di recti on
is tha t the di minuti on of the inci dent beam due to scatteri ng becom es negl igibl e
as com pared wi th the to ta l Ûux of the beam itsel f. Let us noti ce tha t even in the
case shown in Fi g. 10, the asym pto ti c shapes of the inci dent beam and the beam
m odi Ùedby scatteri ng di ˜er very l i ttl e, and thus the observati on of thei r di ˜erence
wo uld requi re m easurements of very high accuracy.

No w, we can specify the classical l im it in scatteri ng supp orted by quanti ta -
ti vel y veri Ùable argum ents.

4. Cl assi cal l im it in t h e scat t er in g of wa ves

The classical dyna m ics as well as the classical scatteri ng theory depend on
the noti on of parti cle tra jectories or paths. However, i t is di£ cult to intro duce
parti cl e tra jectori es in the quantum m echani cs when parti cles wa ve f uncti ons are
given by pl ane wa ves or very wi de beam s. The parti cle tra jectori es can be asso-
ci ated wi th the wa ve functi ons correspondi ng to narro w Gaussian beam s. These
beam s cannot be extrem ely narrow, because such beam s are a˜ected by a stro ng
di ˜ra cti on causing thei r rapid spreading. Onl y moderatel y narrow beam s, of the
wi dth signi Ùcantl y larger tha n the de Bro gl ie wa velength of the incident parti cles,
stay narro w thro ugh the intera cti on region, and thus can be associated wi th the
cl assical tra j ectori es.

Accordi ngly, cl assical f eatures of scatteri ng can be expected for beam s for
whi ch

1 § w § a: (15)

W hen the above condi ti on is fulÙlled, one can intro duce an im pact parameter
of scattered parti cles and connect the scatteri ng angle (ra ther the m ean scatteri ng
angle) wi th the im pact parameter of the inci dent beam.

Three graphs in Fi g. 11 i l lustra te the scatteri ng of the inci dent beam of wi dth
w = 1 0 and di splaced up to y 0 = 3 0 scattere d by the cyl inder of radius a = 4 0 .
It is obvi ous tha t in thi s case al l the parti cles wi l l be reÛected (scattered) by
thi s cyl inder. These Ùgures show shaded conto ur plots for m odul us of the inci dent,
scattered, and to ta l currents, respectivel y. As i t is shown in Fi g. 11b the scatteri ng
current J S consists of the two beams propagati ng outward the scattere r. One of
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Fig. 11. Shaded contour plots of constant modulus of the currents: (a) incident ( j J I j ),

(b) scattered ( j J S j ), (c) total ( j J T j ) for the shif ted narrow particle b eam ( a = 40 ; w = 10

and y 0 = 30 ).

them propagates f rom the scatterer along the inci dent beam, whi le the second one
can be identi Ùed wi th a reÛected beam. The integ rated Ûux of each of these two
beam s are equal to the Ûux of the inci dent beam . Doubl ing the inci dent parti cle's
Ûux by the above \ scattered Ûux" shows, in the m ost convi ncing way, tha t, in
situa ti ons when the scattered wave f uncti on ˆ S overl aps wi th the inci dent wa ve
functi on ˆ I ; J cannot be interpreted as a parti cle current. A true parti cle current
has to be com puted usi ng the to ta l wa ve functi on ˆ . Thi s parti cle current, ,
presented in Fi g. 11c, shows how in the speciÙed condi ti ons the enti re parti cle
beam is reÛected from the scatterer.

For a such narro w beam scatteri ng an impact parameter can be intro duced
and a relati on between the mean scatteri ng angle and the im pact param eter can
be establ ished, sim i lar to the corresp ondi ng relati on in the classical theory . An
addi ti onal reÛected beam spreading is a very characteri sti c feature of the reÛection
of the beam s by convex m irrors.

A sim i lar classical feature of the wa ve and the quantum scatteri ng of nar-
row beam s can be i l lustra ted by m eans of the parti cle Ûow l ines determ ined by
Eq. (9). These Ûow l ines for a narro w beam scattered from a larger radius ri gid
cyl inder are shown in Fi gs. 12a and b. W hi le Fi g. 12a gives a general vi ew of the
scatteri ng Ûow, Fi g. 12b shows i ts deta i ls in the region very close to the scatterer,
where the beam reÛection ta kes place. Al tho ugh the general pi cture of the scat-
tered Ûow resembles the corresp ondi ng classical tra jectori es, there is an importa nt
di ˜erence. The classical tra jectori es m ovi ng wi th smal ler im pact param eter are re-
Ûected stro nger, and thus al l scattered tra jectories are intersecti ng. The quantum
m echani cal Ûow l ines cannot intersect. Thus, in the classical and the quantum me-
chani cs the relati ons between the inci dent and the outg oing parts of the Ûow l ines
are mutua ll y inverted. Ho wever, an enti re narro w beam behaves l ike a classical
tra jectory. Increa sing the shift of the beam, i .e. increasing the im pact param eter,
the mean value of the scatteri ng angle is decreasing.

Thus classical beam s corresp ondi ng to an ensemble of random ly displaced
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Fig. 12. (a) Energy Ûow lines for the same beam as presented in Fig. 11, (b) details of

the same energy Ûow lines near the scatterer surf ace.

parti cl es in the quantum mechani cs can be represented by the analogical ensem-
bl e of randomly di splaced narro w wa ve beams wi th the wi dth w sati sfyi ng the
condi ti on w § a . Usi ng such narro w wa ve beam s as probe beam s the classical
pro cedure deÙning a scatteri ng, di ˜erenti al cro ss-section and to ta l cro ss-section
could be adopted leading to the cl assical values for d¥ C =d¢ and ¥ C

0 .

5 . Fi nal r em ar ks

The di scussion of the \ exti ncti on paradox" has begun by a tho rough analysis
of the quantum theo ry of elastic scatteri ng. Usi ng the exact wa ve functi on for the
two -dim ensional scatteri ng of a parti cle by a hard cyl inder i t was pointed out
tha t an appl icati on of the standard quantum mechanical theo ries requi res some
cauti on in the descripti on of the forwa rd elasti c scatteri ng. These theo ries can be
form ulated in more consistent way i f the plane wa ves, usually ta ken as inci dent
wa ve functi ons, are repl aced by the wa ve f uncti ons of Ùnite wi dth beams. Then, the
scatteri ng can be deÙned as a pro cess of rem ovi ng or scatteri ng parti cles outsi de
the beam caused by thei r intera cti on wi th the ta rget parti cle intro duced into the
beam . Thi s pro cess is accompanied by adjusted m odi Ùcati ons of the beam i tsel f.
The to ta l Ûux of the scattered parti cles can be measured ei ther by detecto rs placed
outsi de the inci dent beam or by the change of the forwa rd Ûux of the beam .

For a given size of the scatterer and wi dth of the inci dent parti cl e beam the
angular patterns of the parti cle scattered outsi de the beam and the insi de beam
di stri buti on stabi lizes i f the detecto rs are placed beyond certa in characteri stic
di stance R c dependent on the beam wi dth w and the scatterer size a . At these
di stances the shadow region seen just behind the scatterer is repl aced by the
attenua ted, due to scatteri ng, inci dent beam . W hen w grows the cri ti cal di stance,
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R c increases and the attenua ti on of the forwa rd radiati on is decreasing, so i ts
m easurement, requi ring hi gher accuracy detecto rs, becom es m ore di£ cul t.

W hen w ƒ a ƒ 1 the Ûux of scattered parti cles can be twi ce larger tha n
tha t one predi cted by the classical theo ry .

The wi dth parameter w shoul d be connected wi th the tra nsverse coherence
length of the indivi dual parti cles. Unti l now, in al l m acroscopic system s thi s tra ns-
verse coherence length is always much smal ler tha n a typi cal size of m acroscopic
scatterer s (e.g. bi l l iard bal ls). Theref ore, these scatteri ngs can be described classi-
cal ly.

Thi s situa ti on may change up on the constructi on of an ato mic laser. Such
ato m ic laser coul d pro vi de ato m ic beams wi th w exceeding the size of scatterers for
whi ch the wa ve and the quantum scatteri ng pro perti es woul d becom e im porta nt.
The above pro perti es can be easily dem onstra ted wi th a laser pointer. W hi le the
reÛection of these beam s from any m acroscopi c mirro r can be vi ewed classical ly
in term s of geometri cal opti cs, i ts scatteri ng by a thi n wi re or needle requi res the
wa ve theory of scatteri ng.

There is nothi ng paradoxi cal in an existence of the two exti ncti ons | classical
and quantum . Both exti ncti ons refer to the two di stinct preparati ons of the ini ti al
condi ti ons and the Ùnal measurements, so one shoul d not be surpri sed tha t the
resul ts are di ˜erent. W i th a better understa ndi ng of the condi ti ons for the quantum
or the wa ve scatteri ng i t could be interesti ng to veri fy these results experim ental ly.
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