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The extinction paradox, the difference of classical and quantum scat-
tering cross-sections for the scattering of particles by a rigid sphere (% =
27a? = 20° for ka > 1), is analyzed in a simpler 2D model of a rigid cylin-
drical potential. Rigorous solutions of the Schrodinger equation for particle
beams, including also finite width beams, are derived and employed in the
description of the scattering process. The scattering particle fluxes, with a
thorough treatment of the forward directions, are being studied. It is pointed
out that for wide beams (w > a) the scattered flux can reach the value de-
termined by the quantum theory, provided that it is measured at distances
R > wa). Moderately narrow beams (1 L w < a) behave as classical tra-
jectories, and their scattering can be described in classical terms. Thus, the
classical limit of quantum scattering requires not only that the de Broglie
wavelength Ag is much smaller than the size of the scatterer (a > )\B),
but also that the transverse width of beams of de Broglie’s waves is small,

w < a.

PACS numbers: 32.80.Cy, 42.25.Fx, 61.10.Dp

1. Introduction

Almost all textbooks on quantum mechanics, e.g. [1-3], as well as the scat-
tering theory, e.g. [4, 5], discuss the scattering of a particle by an impenetrable
sphere and show that for large particle momenta ka > 1 the cross-section is twice
its geometrical cross-section area ma?. For the first time this result has been ob-
tained by Massey and Mohr [6]. The condition of large particle momenta means
that the de Broglie wavelength Ap is much smaller than the radius of the scatterer
a. This 1s considered as the necessary condition for the classical limit of quantum
mechanics, so, the above result seems paradoxical. Therefore, it is referred to as
the “extinction paradox”.

A similar effect exists also for the scattering of electromagnetic waves by a
conducting sphere in the limit of short wavelength, A < a [7].

(369)
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The effect has been interpreted as caused by the interference of the waves
diffracted and passing near the sharp boundary of a scattering potential. It is be-
lieved that for a diffused boundary the cross-section in the limit ka >> 1 should
match the classical value; however, this assumption still needs a quantitative ver-
ification. In this discussion, which i1s again devoted to a rigid boundary scatterer
model, a more careful treatment is given to the description of incident beams of a
finite width and to the determination of particle flux in the directions overlapping
with the incident beam.

2. Classical and quantum two-dimensional scattering
by a perfectly reflecting cylinder

To contribute to this discussion let us consider an exactly solvable, in the
classical and the quantum theories, scattering model. The model consists of a hard,
perfectly reflecting cylinder with incident particles perpendicular to and uniform
along the cylinder. In this configuration all dynamical equations, either the classical
equations of motion, or the Schrodinger equation in the quantum case, reduce to
the two-dimensional problems that can be solved exactly.

The definition and description of scattering in both theories are different. In
the classical picture the trajectories of scattered or deflected particles can be easily
distinguished from those non-scattered. The scattering angle ¢ of each incident
particle depends only on the impact parameter. Within the quantum mechanical
approach wave functions give only statistical information about scattering of an
ensemble of the particles. One definitely cannot determine whether a particular
particle 1s deflected and scattered. There i1s no relation between the scattering
angle and the impact parameter, as this parameter is not determined. On the
other hand, the quantum description of scattering are very often given in terms of
phase shifts, which are not defined and present in the classical theories. Therefore,
it is rather difficult to compare the classical and the quantum scattering theories as
both theories have different notions of the scattering and describe 1t using different
terms and variables.

Attempting to make a comparison of both theories we may first ask two
questions:

1) is the limit of de Broglie’s wavelength Ap <a the sufficient condition for
the classical scattering?

2) what conditions are required for the observation of the quantum scatter-
ing?

To answer these questions and to relate the quantum and the classical the-
ories let us consider an exactly soluble in both theories two-dimensional model
of the scattering of a particles by a 2D cylindrical potential infinite step (rigid
cylinder) of radius a.

As it 1s well known, the scattering of a plane wave by a rigid sphere can
be also solved exactly [1-5]. The hard cylinder model has been chosen because
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it is simpler and the description of confined and displaced beams is easier than
for spheres. Assuming that the incident beams are uniform along the cylinder the
model can be formulated as a two-dimensional problem.

2.1. Classical scattering

For a hard cylinder scatterer in the classical mechanics, sketched in Fig. 1,
only the reflection law, 1.e. the inversion of the normal component of velocity at
the moment of collision is necessary to determine a dependence of the scattering
angle ¢ on the impact parameter p:

Fig. 1. Particle trajectory in classical scattering from a rigid cylinder.

¢ =7 — 2arcsin p/a,

leading to the differential cross-section
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2.2. Quantum scattering

The quantum description of the scattering can be extracted from the sta-
tionary wave functions satisfying the time independent Schrodinger equation. For
incident particles propagating toward a scatterer placed at the origin of the co-
ordinate system along the direction k(a) = {cosa,sinw,0} and described by the
corresponding plane wave, the total wave function, satisfying the necessary bound-
ary condition ¥(a) = 0, is

oQ

Wa(r) = W + W = T 3 i”e‘i”“ei”‘z’i;g()lzz))Hr(f)(kr), (3)
n=—oo n a
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where J,, and HT(LI) are the Bessel and Hankel functions of order n; they can be
computed using Bessel’s functions libraries. Although the sum includes the infinite
number of terms, when a is finite, only the finite number of terms are necessary
to reach the required accuracy. Figures 2a and b illustrate the magnitude of the
partial wave amplitudes and the reached accuracy of boundary condition for the
scatterer of radius a = 25 (all sizes and distances are given in the de Broglie
wavelength unit). Taking into account 2 x 220 partial waves the wave function
at » = a is of the order of ~ 10~!2 and the corresponding wave function can be
considered to be exact.

E 10(1) — l.e12
10 RSN, = 9.e-13
°1 L Y % .
= %3‘2 T a) = 8e13
T 10° a=25, N=220
~ 10—4 T.e-13
—~
g 107 6.e-13
10
;é 107 5.e13
-8
— ig.g 4013
-10
10 3.e-13
w0
10712 a=25 2.e-13 >
107 lel3 |, oy
18‘15 x 0.0 RN et
50 100 150 200 0 270 360
n @ [deg]

Fig. 2. (a) Magnitude of partial wave expansion coeflicients, (b) accuracy in the ful-
fillment of the boundary condition, a = 25A.

Knowing the incident, scattered, and total wave functions we can calculate
the corresponding particle currents

h
J = —Re?, iV
o(1) = Laperrg(riv (),
and the radial fluxes

¢
Fy(r ) = / To(r.¢')dg, (5)

where @ stands for {I, S, T} depending whether one takes either the incident or
the scattered part or the total wave function.

(4)

An example of the radial components of the currents and fluxes is shown
in Figs. 3a and b. While at this distance J} vanishes in the forward directions
¢ < 10° (which corresponds to a shadow behind the scatterer) it oscillates around
J{ with increasing ¢-frequency and decreasing amplitude. The scattered current
J§ 1s strongly peaked in the forward directions while beyond this forward sector
it remains rather small.

The currents JJ and JI integrated over all angles i.e. the fluxes F{'(7) and
Fi(m) vanish in agreement with the unitary properties of the wave function. Only
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Fig. 3. (a) Incident, scattered and total radial currents for the plane wave scattering
as functions of the scattering angle 8. (b) The same for fluxes. ' and J are in arbitrary

units.

the scattered current Jf integrated over all angles, i.e. Ff (), is non-vanishing.
It is this object that 1s used to estimate and evaluate the interaction between the
incident particles and the target particle causing scattering.

An important property of the scattering process is characterized by a differ-
ential cross-section

(j_g) - (6)

and a total cross-section

-] ()

When the above definitions are applied to the scattered part of the wave function
(3), in the limit ka > 1 we obtain

o — 4a, (8)

5o we have 0'8 =20§.

The above procedure summarizes the basic features of the quantum me-
chanical derivation of the parameter known as the scattering cross-section. This
procedure can be found in all textbooks on the quantum mechanics. It is clear,
simple and leads to the object having many interesting and useful properties,
e.g.: no interferences between different partial waves contributions in the total
cross-section, a simple form of the optical theorem that relates 0'8 with properties
of Ws in the forward direction. However, the usage of Jg raises some questions.

Can Jg(r) always represent a flux of particles? The function Ws(r) is only
a part of the quantum wave function. Can the Born interpretation of the wave
function with p = ¥*¥ treated as the density of particles be extended to the part
of the wave function, ps = W§Ws?
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Within the orthodox formulation of the quantum mechanics the process of
scattering should be described by the measurable quantities and such are those
expressed by ¥ and ¥ | 1.e. J; and Jp. Both quantities represent the true particle
wave functions giving the true particle densities and currents. While ¥7 and Jy
refer to particle beams without any scatterer (or scatterer removed) then with the
scatterer presence the wave function is different and is described by ¥t determining
Jr. In the following it 1s shown how the above program can be realized. Before
this will be done let us point out two difficulties in operating with Jr.

Firstly, as can be seen in Fig. 3 the current Ji(r,¢) is a rapidly varying
function of ¢, and such rapid variations may be difficult for measurements.

Secondly, we can recall an independent description and visualization of the
scattering, proposed by Hirschfelder et al. [8], given in terms of flow lines, which
are the lines tangent to the current field Jr(v). In the case of electrodynamics
the flow lines are tangent to the Poynting field which has been recently discussed
in [9]. The flow lines can be obtained by solving a set of the differential equations

& = Fa(r(). )
Solving this set of equations with the help of any Runge-Kutta type methods, with
the initial data #(0) = rp, the integrated flow lines can be found. Such flow lines,
corresponding to the scattering by the hard cylinder of radius ¢ = 10, are shown
in Fig. 4. The incident particles are coming from the left side where far away the
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Fig. 4. Flow lines for the plane wave scattering, a = 10A.

flow is uniform and the flow lines are parallel. Sampling this flow field at equal
spacing the fluxes embraced between two consecutive lines are equal. The particles
which are overflowing the scatterer leave a wake, void track visible as a shadow
behind the scatterer. The flow lines representing the integrated solutions of the
differential equations can neither intersect nor split. It is puzzling that these flow
lines do not show any large angle scatterings. That is in a complete disagreement
with our expectations and observations.

To get a consistent description of scattering the incident uniform flux of
particles represented by the plane wave must be replaced by the particle beams
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having a finite transverse width and represented by the appropriate wave function.
In fact, all scattering experiments are performed with finite width beams. Qutside
the incident beams we have

Ws = WT, and Js = JT,
so the differential cross-section formula, Eq. (6), raises no questions if it is used for
the particles outside the incident beam. However, defining the total cross-section
o0, Eq. (7), through the integration over all the scattering angles the integral
includes also the disputed sector. One may hope that this disputed contribution
is negligible if the scattered particles are observed at sufficiently large distances
from the scatterer. In the following we investigate this assumption quantitatively.

3. Gaussian beams scattering

The wave function given by Eq. (3) corresponds to the incident plane wave
propagating at an angle o with respect to the z-axis. Superposing the wave func-
tions with different angles o wave functions for finite width beams can be found.

Thus, the incident plane wave must be replaced by

T = [ dadH@ o p(a), (10)
while in the scattered part of the wave function the factor e~ must be replaced by

emina ﬁ/dae_i”ae_ik(“)'”P(a), (11)
where for a Gaussian beam model the angular distribution function

P(a) = Y emwiat

NG ;
and w is a parameter determining the angular spread of the incident beam, as well
as its spatial width, while 7o determines the position of the Gaussian beam waist.

This form of the incident beam wave function is not very convenient in any
further computations because it requires the integration at each point 7.

It is worth pointing out that this inconvenience concerns the incident beam
only. The scattered part of the wave function requires the modified, according to
Eq. (11), partial wave expansion coefficients. However, all these coefficients, and
therefore integrations, have to be computed only once.

To avoid problems introduced by the above integrations two approximations
can be proposed. In the first one, the integrals are replaced by the sums over the
discrete plane waves,

/daP(a)...—>Zi:P(ai)...

The second approximation is valid for beams with a small angular spread, and
therefore for rather wider beams, w > 1. For these beams k(«) can be approxi-
mated by the lowest order terms k(o) ~ k{1 — @?/2,«,0} and all the necessary
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integrations with P(«) can be done analytically. Thus we get, for the freely prop-
agating incident wave,

2w : k%(y — yo)?
Uiz, y) =~ etk(e=w0) ox [— - , 12
1(@,9) \/4w2 + 2ik(z — o) P 1w? + 2ik(x — xp) (12)

and for the modification factors for the partial wave expansion coefficients,

ina k() To\ 2w —ikzo (n + kyo)?
(e™%e () ) & \/ﬁe exp [—m] . (13)

These approximations introduce some errors in the solutions of the Schrodin-
ger equation. The first approximation, though still keeping the boundary condi-
tions fulfilled, introduces spurious “ghost” beams that propagate in the same di-
rection as the beam, and are repeated periodically along the orthogonal direction.
The freely propagating beams in the second approximation are not exact solutions
of the Schrodinger equation, so the full wave functions cannot be claimed to be
exact. Nevertheless, their accuracy can be very good, particularly for the wide
beams.

In Fig. 5 the flow lines for the scattered incident beam of finite width are
shown. In this case there is also the shadow region behind the scatterer; however,
there are the flow lines representing large angle scatterings. These large angle scat-
tering lines are connected with the peripheral lines in the wings of the incident
beam. This property is completely different from that for the classical trajecto-
ries. Classically, the incident particles moving with smaller impact parameter are
more deflected. The flow lines introduced in this discussion are illustrating global
properties of the wave solutions of the scattering problem.

y 80 a=10, ] w=40

40

-80 -40 0 40 80
X

Fig. 5. Flow lines for the finite width beam scattering.
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Fig. 6. Density plots for modulus of the currents: (a) incident (|Ji|), (b) scattered
(|ds]), (c) total (|Jr|) as functions of the —y coordinates (¢ = 10, w = 60).
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Fig. 7. Similar as in Fig. 6, with faster spreading of the scattered wave function, over

a longer distance (¢ = 5, w = 100).

Figures 6 and 7 show the density plots representing the magnitudes of the
discussed currents: incident |Ji(7)| (top figures), scattered according to the scat-
tered part of the wave function |Js(r)| (middle figures) and scattered according
to the total wave function |J1(7)| (bottom figures).
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As it 1s seen, the scattering current computed according to the scattering
part of the wave function is dominated by a very strong peak in the forward di-
rection, while the scattering current beyond this forward sector is hardly visible.
However, this huge flux in the forward direction, when it overlaps with the incident
beam, does not represent any flux of particles, and is not a measurable quantity.
The scattered part of the wave function is only a subsidiary function that can
be computed and used to find the complete wave function. As the bottom figures
show, these big scattered parts of the wave functions contribute to the complete
shadows just behind the scatterers. These shadow regions, in which no particles
can be detected, are surrounded by a transition region where the particle cur-
rents exhibit strong transverse modulations. These oscillations appear on a screen
placed across the beam as diffraction fringes. As the distance from the scatterer,
R, increases the scattered part decreases (due to ~ 1/4/r dependence of the Han-
kel functions on r), and in the shadow behind the scatterer a bright small spot,
discovered and called at the beginnings of the diffraction theory a Poisson spot,
appears. Upon further increase in R the central Poisson spot is growing while the
diffraction fringes seen across the incident beam are disappearing.

The dependence of the currents Ji, Jg, and Jr on ¢ is shown in Fig. 8, in
log—log plot in Fig. 8a, while the relevant integrated scattered fluxes are shown in
Fig. 8b. These plots are, in some sense, analogical to those presented in
Figs. 3a, b. Due to the finite width of the incident beam the most of rapid oscil-
lations of Jr at large scattering angles have been removed. Less rapid oscillations
that are left represent specific properties of the scattering known as the forward
diffraction peaks. These forward diffraction peaks are observed not only in the op-
tical domains but also, for example, in high energy elastic collisions of elementary
particles, see e.g. [10].

In this discussion the scattering was defined as a process in which the im-
pinging particles are deflected and removed from the incident beam. To evaluate
quantitatively those particles it is necessary to specify the incident beam in a
more precise way. In particular, it 1s necessary to determine a transverse extension
and cross-section of the incident beam. In this discussion it has been assumed
that the transverse extension, yg, of the incident beam, centered along the = axis,
dependent on the position along the beam z, is determined by

|J1(2z, yB)| = |J1(x,0)]/1000.

This definition of the beam extension is somehow arbitrary; but, as will be shown,
small changes in the estimation of the beam extension do not cause any significant
effects.

The extension of the beam, at the distance Ry = 3000 from the scatterer, is
shown in Figs. 8a and b by the dotted vertical lines placed at ¢p = arcsinyg/Ro.
As it is seen, the scattered current represented by Jg is noticeable only inside the
incident beam for ¢ < ¢p, but there, according to the present discussion, Jg does
not represent any particle current. Beyond this sector, for ¢p < ¢ < 7 — ¢p the
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Fig. 8. (a) Incident, scattered and total radial currents for a beam wave scattering
as functions of the scattering angle 6. (b) Scattered flux and the difference of incident
and total fluxes as functions of §. Measured scattered flux is defined either as Fi. =
Fs(m) — Fs(¢B) or Fie = Fi(és) — Fr(¢s). ¥ and J are in arbitrary units.

scattered current Jg(¢) coincides with the true current Jr(¢) determined by the
total wave function.

To account the flux of particles removed from the incident beam one can
either integrate the particle current outside that beam,

FS/C(RQ) = Fs(Ro, 7T) - FS(RQ, (f)B),

or find the change of the particle flux inside the incident beam,

F§o(Ro) = F1(Ro, ¢B) — Fr(Ro, ¢B).
Figure 8b shows F's(Ro, ¢) and F1(Ro, ¢)—F1(Ro, ¢) in the entire range 0 > ¢ > .

As it appears from this picture, the two ways of calculation of the scattered fluxes
give the same values, i.e., F{-(Ro) = F{-(Ro).

The flux of particles scattered off the beam and detected as the scattered
particles is equal to the reduction of flux of the incident beam measured across
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its cross-section. This property can be identified with the optical theorem for the
finite width beams. It does not depend on the precise definition and the value
of the extension parameter for the incident beam. The curves showing Fs(Rg, ¢)
and F1(Rg,¢) — Fr(Rg, ¢) are mirror-like images in the horizontal line passing
through their point of intersection, for ¢ greater than certain critical angle smaller
than ¢gp.

Using these definitions it is possible to determine how much the scattering
flux determined according to the wave or the quantum theory differs from the
corresponding classical scattering flux. A relevant parameter p is

_ FSQC(RO) _ 2FSQC(R0) (14)
- fﬂgé - fws(ffo, T).

The forward scattered beam at several distances R is shown in Fig. 9. It is
characteristic how the initial rapid diffraction fringes, accompanying the shadow
behind the scatterer, are vanishing, and the tiny Poisson spot that emerged in the
shadow, grows and ends as the final beam. Its asymptotic shape resembles the
attenuated incident Gaussian beam. The sixth graph of this figure is plotted at
a distance at which a freely propagating Gaussian beam is naturally spread, due
to diffraction, lowering its central intensity (notice the rescaled axes of this plot).

1.5 15 1.5

J |Rg=100 e 1 R=300 - 1| |Re=1000 I
! —s| — 8 -~ 8
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-150
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0.0 = =
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Fig. 9. Forward particle currents distributions at increasing distances from the scat-
terer. p is the ratio of quantum and classical scattering fluxes (¢ = 10, w = 200). J and y

are in arbitrary units.
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The attenuated asymptotic beam experiences the same spreading. The remaining
part of the beam can be recovered in the scattered particles outside the incident
beam. It 1s worth pointing out that for increasing R the scattered flux and the
associated parameter y is also growing, reaching for the incident beam (w = 200)
and scatterer radius ¢ = 10 the final value ¢ = 1.5. Further increase in R causes
a proportional linear spreading of the incident and the scattered forward beam
(notice the change of units in the last plot).

Similar effects are shown in Fig. 10, for a wider incident beam (w = 1000).
In this case, the asymptotic distance above which the angular scattering pattern
does not change is larger and the final value 4 = 1.81.
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(a) The same as in Fig. 9 for a wider beam, (b) scattered fluxes distribu-

tions and angular positions of the incident beam at various distances from the scatterer
(¢ =10, w = 1000). ¢ is in degrees, F' in arbitrary units. F, J and y are in arbitrary

units.

The bottom parts of these figures show how for increasing R the angular
width of the beam boundary is decreasing and consequently shifting to the left.
However, the angular width of the scattered beam is not vanishing. Otherwise
our “optical theorem” would be violated. It remains finite, of the order of ~ 1/w,
and within the range of the validity of the symmetry property for the functions
Fs(Ro, qf)) and FI(RQ, qf)) - FT(RQ, qf))

Considering the results presented in Figs. 9 and 10 it can be said that the
classical scattered flux can be exceeded by the corresponding wave or the quantum
flux when the width of the incident beam is greater than the diameter of the
scatterer. In addition, the detection should be done sufficiently far away from the
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scatterer, where the forward scattered beam shows no diffraction fringes and its
shape resembles a distribution of the freely propagating incident beam at that
place, reduced in its intensity due to scattering. For very wide beams, in the limit
w — 0o, the wave scattering factor ¢ — 2, and thus this scattering i1s very much
different from the classical one. However, to observe these effects the measurement
must be made sufficiently far away the scatterer, at distances R > Rgsy. When
w — oo then Ragy — oo shows that this limiting value ¢ = 2 may only be detected
asymptotically.

Another difficulty with the wide beam measurements in the forward direction
is that the diminution of the incident beam due to scattering becomes negligible
as compared with the total flux of the beam itself. Let us notice that even in the
case shown in Fig. 10, the asymptotic shapes of the incident beam and the beam
modified by scattering differ very little, and thus the observation of their difference
would require measurements of very high accuracy.

Now, we can specify the classical limit in scattering supported by quantita-
tively verifiable arguments.

4. Classical limit in the scattering of waves

The classical dynamics as well as the classical scattering theory depend on
the notion of particle trajectories or paths. However, it 1s difficult to introduce
particle trajectories in the quantum mechanics when particles wave functions are
given by plane waves or very wide beams. The particle trajectories can be asso-
ciated with the wave functions corresponding to narrow Gaussian beams. These
beams cannot be extremely narrow, because such beams are affected by a strong
diffraction causing their rapid spreading. Only moderately narrow beams, of the
width significantly larger than the de Broglie wavelength of the incident particles,
stay narrow through the interaction region, and thus can be associated with the
classical trajectories.

Accordingly, classical features of scattering can be expected for beams for

which

l<€w<Ka. (15)

When the above condition is fulfilled, one can introduce an impact parameter
of scattered particles and connect the scattering angle (rather the mean scattering
angle) with the impact parameter of the incident beam.

Three graphs in Fig. 11 illustrate the scattering of the incident beam of width
w = 10 and displaced up to yo = 30 scattered by the cylinder of radius a = 40.
It is obvious that in this case all the particles will be reflected (scattered) by
this cylinder. These figures show shaded contour plots for modulus of the incident,
scattered, and total currents, respectively. As it is shown in Fig. 11b the scattering
current Jg consists of the two beams propagating outward the scatterer. One of
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Fig. 11. Shaded contour plots of constant modulus of the currents: (a) incident (|J7|),
(b) scattered (|Js]), (c) total (|Jr|) for the shifted narrow particle beam (¢ = 40, w = 10
and yo = 30).

them propagates from the scatterer along the incident beam, while the second one
can be identified with a reflected beam. The integrated flux of each of these two
beams are equal to the flux of the incident beam. Doubling the incident particle’s
flux by the above “scattered flux” shows, in the most convincing way, that, in
situations when the scattered wave function ¥y overlaps with the incident wave
function ¥1, Jg cannot be interpreted as a particle current. A true particle current
has to be computed using the total wave function Wr. This particle current, |Jr|,
presented in Fig. 11lc, shows how in the specified conditions the entire particle
beam is reflected from the scatterer.

For a such narrow beam scattering an impact parameter can be introduced
and a relation between the mean scattering angle and the impact parameter can
be established, similar to the corresponding relation in the classical theory. An
additional reflected beam spreading is a very characteristic feature of the reflection
of the beams by convex mirrors.

A similar classical feature of the wave and the quantum scattering of nar-
row beams can be illustrated by means of the particle flow lines determined by
Eq. (9). These flow lines for a narrow beam scattered from a larger radius rigid
cylinder are shown in Figs. 12a and b. While Fig. 12a gives a general view of the
scattering flow, Fig. 12b shows its details in the region very close to the scatterer,
where the beam reflection takes place. Although the general picture of the scat-
tered flow resembles the corresponding classical trajectories, there 1s an important
difference. The classical trajectories moving with smaller impact parameter are re-
flected stronger, and thus all scattered trajectories are intersecting. The quantum
mechanical flow lines cannot intersect. Thus, in the classical and the quantum me-
chanics the relations between the incident and the outgoing parts of the flow lines
are mutually inverted. However, an entire narrow beam behaves like a classical
trajectory. Increasing the shift of the beam, i.e. increasing the impact parameter,
the mean value of the scattering angle is decreasing.

Thus classical beams corresponding to an ensemble of randomly displaced
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Fig. 12. (a) Energy flow lines for the same beam as presented in Fig. 11, (b) details of

the same energy flow lines near the scatterer surface.

particles in the quantum mechanics can be represented by the analogical ensem-
ble of randomly displaced narrow wave beams with the width w satisfying the
condition w <« a. Using such narrow wave beams as probe beams the classical
procedure defining a scattering, differential cross-section and total cross-section
could be adopted leading to the classical values for do®/d¢ and ¢§.

5. Final remarks

The discussion of the “extinction paradox” has begun by a thorough analysis
of the quantum theory of elastic scattering. Using the exact wave function for the
two-dimensional scattering of a particle by a hard cylinder it was pointed out
that an application of the standard quantum mechanical theories requires some
caution in the description of the forward elastic scattering. These theories can be
formulated in more consistent way if the plane waves, usually taken as incident
wave functions, are replaced by the wave functions of finite width beams. Then, the
scattering can be defined as a process of removing or scattering particles outside
the beam caused by their interaction with the target particle introduced into the
beam. This process is accompanied by adjusted modifications of the beam itself.
The total flux of the scattered particles can be measured either by detectors placed
outside the incident beam or by the change of the forward flux of the beam.

For a given size of the scatterer and width of the incident particle beam the
angular patterns of the particle scattered outside the beam and the inside beam
distribution stabilizes if the detectors are placed beyond certain characteristic
distance R. dependent on the beam width w and the scatterer size a. At these
distances the shadow region seen just behind the scatterer is replaced by the
attenuated, due to scattering, incident beam. When w grows the critical distance,
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R. increases and the attenuation of the forward radiation is decreasing, so its
measurement, requiring higher accuracy detectors, becomes more difficult.

When w > a > 1 the flux of scattered particles can be twice larger than
that one predicted by the classical theory.

The width parameter w should be connected with the transverse coherence
length of the individual particles. Until now, in all macroscopic systems this trans-
verse coherence length 1s always much smaller than a typical size of macroscopic
scatterers (e.g. billiard balls). Therefore, these scatterings can be described classi-
cally.

This situation may change upon the construction of an atomic laser. Such
atomic laser could provide atomic beams with w exceeding the size of scatterers for
which the wave and the quantum scattering properties would become important.
The above properties can be easily demonstrated with a laser pointer. While the
reflection of these beams from any macroscopic mirror can be viewed classically
in terms of geometrical optics, its scattering by a thin wire or needle requires the
wave theory of scattering.

There is nothing paradoxical in an existence of the two extinctions — classical
and quantum. Both extinctions refer to the two distinct preparations of the initial
conditions and the final measurements, so one should not be surprised that the
results are different. With a better understanding of the conditions for the quantum
or the wave scattering it could be interesting to verify these results experimentally.
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