Vol. 101 (2002) ACTA PHYSICA POLONICA A No. 2

Simple Method for Calculating
the Weak-Field Electron Diamagnetism
in Cubic Lattices

S. OLSZEWSKI

Institute of Physical Chemistry of the Polish Academy of Sciences
Kasprzaka 44/52, 01-224 Warsaw, Poland

(Received August 13, 2001; revised version November 12, 2001)

The idea of electron wave packets moving along closed anisotropic Fermi
surfaces placed in a constant magnetic field has been applied to the calcu-
lation of the orbital magnetic moment of an individual free electron and
tightly-bound s-electron in a crystal lattice. In each case the magnetic mo-
ment is obtained as a derivative of the electron energy done with respect to
the strength of the magnetic field. In the next step, calculations have been
extended to electron ensembles. For a free-electron ensemble a thorough cal-
culation of the weak-field magnetic moment gives a result similar to that
obtained by a well-known method developed by Landau. On the other hand,
calculations done for the s-band of the tightly-bound electrons of metallic
iron give an absolute value of the magnetic moment much smaller than in
the free-electron case. Simultaneously, the sign of the moment is changed
indicating a lowering of the iron band electron energy with magnetization.

PACS numbers: 75.20.—g, 75.20.En, 76.40.+b

1. Introduction

Difficulties connected with the calculation of the diamagnetic susceptibility
of the metal electrons are well known [1-6]. When electrons are considered as
classical particles, we have a theorem due to Van Leeuwen [5] which states that
the orbital magnetic moment vanishes, even if the electrons move in a field which
varies from point to point. The non-vanishing diamagnetism of the electron gas
18, in fact, explained by quantum mechanics according to which the free-electron

(249)



250 S. Olszewski

particles moving in the presence of the magnetic field B occupy discrete levels
having the following energies:

E, = hiy (n + %) : (1.1)
here
e|B|
2y = =/ 1.2
0 me (1.2)

is the gyration frequency of the electron particle in an external magnetic field of
the strength |B|, the integer number n labels the quantum levels.

When | B increases, we have an increase in any E,, because of relations (1.1)
and (1.2). But, simultaneously, an increase in the degeneracy of the quantum levels
takes place with the increase in |B|. This degeneracy increase provides the system
with an empty place in the originally occupied quantum levels, and this place
should be next occupied by electrons being originally in the levels of a higher
energy. A transition of a part of electrons from the levels of a higher energy into
those of a lower energy gives a tendency of lowering the whole energy of the system.
In total, an increase in |B| leads to a competition of two tendencies concerning
the system energy: the first one — connected with (1.1) and (1.2) — increases
that energy, the second one, connected with an increase in degeneracy of any
level n, tends to make the system energy lower. This situation, which is evidently
different from a classical invariance of the electron energy with the change of
the field strength |B|, led many authors, beginning with Landau, to apply the
quantum statistics to the whole of the electron ensemble in order to calculate a
net dependence of the free energy of the electron ensemble on the field strength |B|.

However, the task successfully accomplished for free electrons, becomes es-
pecially tedious in the case of these metals in which the electron particles remain
under an important influence of the crystal core [6]. In this case, contrary to the
free-electron case, any description of the electron states becomes usually a com-
plicated function of components of the wave vector k. In consequence of that, any
calculation of the statistical partition function and free energy of the electron en-
semble becomes a difficult problem. In fact, the calculation of the Landau levels
alone becomes a difficult task in the case of the presence of the crystal lattice, for
— already in a semi-classical picture — it requires a regularly complicated calcu-
lation of the Roth phase describing the quantum levels. Difficulties with a strictly
quantum-mechanical treatment of the crystal electrons submitted to the action of
an external magnetic field are well known [7-11]. Simultaneously, an interest in
the electron motion of this kind considered especially for simple cubic lattices, has
been raised recently on the experimental basis [12-15].

The aim of the present paper is to develop a formalism according to which a
treatment of diamagnetism of the crystal electrons seems to be much easier than
in the former theories. The approach is based on the observation that although
a classical electron energy remains unchanged with the change of the magnetic
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field | B|, a quantum energy of that electron is changed because the radius of the
electron orbit changes with |B|. In effect, a differentiation of the radius of the
quantum orbit with respect to the magnetic field leads to a proper expression for
the magnetic moment of a single electron. A correct result obtained in this way
for an individual magnetic moment can be next integrated to give the magnetic
moment of the electron ensemble, both in the case of isotropic and anisotropic
(but closed) Fermi surfaces.

2. Dynamical parameters of electrons in cubic lattices applied to the
calculation of the action function and the orbital magnetic moment

For the sake of simplicity we assume that the field | B| is taken parallelly to
one of the Cartesian axis, say z, and the same field is also parallel to one of the
crystallographic axis. A fundamental parameter of our calculation is the action
function

1

T on

J pd(r— 1) = o ]4 (2 — 20) + pyd(y — o))

T
- . ) dt 2.1
o7 /. (P2 + pyy) (2.1)

taken along a closed electron path; here r. = (¢, y.) is the position of the gyration
center of the wave packet and the integration in the last step in (2.1) is extended
over the time period T of the electron gyration. Since the coordinates of the
gyration center are at rest, the velocities of the electron wave packet entering
(2.1) can be calculated from the components of the Lorentz equation [16]

i‘—i‘czi‘va:hﬁ, (2.2)
2
L hi,
— Y= Y= Uy = — , 2.2
V=Y =y=1y 5 (2.2a)
whereas the wave-packet momenta p, and p, are:
1
2
1
Py = §hky (2.3a)

The last two equations can be obtained from the energy formula for a
free-electron wave packet moving in the (z,y) plane

1 1 1 1
EI® = Ski, + 5ky, = 5(0e — ay)i + 5(py + @) (2.4)
the subscript zero refers to free electrons,
oz Bl _ eB: (2.5)

2c 2c
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is a constant, moreover in (2.4)
h=m=1 (2.6)

have been put for the sake of simplicity. A reference between k;, ky,, pr, py, and
x, yin a crystal lattice is discussed in Appendix. From one pair of the Hamilton
equations we obtain

C omte |

Pzq = _a— = _a(py + Ofx)O = —QYo = _akyua (27)
Lo

. O p'ree :

Pyo = — 3l = a(py — ay)o = ady = aky,, (2.7a)
Yo

because from the other pair of the Hamilton equations:

) Efree

To = VUgg = aapﬁ = (px - ay)o = kg,, (28)

) 6Efree

Yo = Uyy = ——— = (py + ax)g = ky,. (2.8a)

aPyo

The time integration performed in (2.7), (2.7a) gives

Peo = —ayo + 7, (2.9)

Py, = azg + C”, (2.9a)

where ', C" are constants. But for any rotational motion the integration constants
C’, C" should be necessarily equal to zero. A substitution of (2.9), (2.9a) together
with ¢’ = C” = 0 into the definitions of k., and ky, presented in (2.4) [see also
(2.8), (2.8a)] provide us readily with the formulae

1
zo — _kxua 2.10
Pro = 5 (2.10)
1
Pyo = §kyoa (210&)

which are equivalent to (2.3), (2.3a), on condition the simplification done in (2.6)
is taken into account.

A substitution of (2.10), (2.10a) into (2.7), (2.7a) provides us readily with
the Lorentz equations; see (2.2), (2.2a). A characteristic point is that the Lorentz
equations (2.2), (2.2a), as well as equations (2.3), (2.3a), remain valid not only for
a free-electron wave packet but also for a packet moving in the field of a crystal
potential. The proof of that property is given in Appendix for the case of the
tightly-bound s-electrons in the body-centered cubic lattice; analogous proofs for
electrons in other lattices can be also presented.

Since from (2.2), (2.2a) we have

h

—dk, = —d(y — y.), 2.11
2w (¥ — ve) ( )
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h
%dky =d(x — z.), (2.11a)
we obtain for (2.1) on the basis of (2.3), (2.3a)
2 2
= ih—]{kydkx = _ LA kodk,. (2.12)
27 2« 27 2«

The integral expression (2.12) represents the area circumvented by an electron in
its gyrational motion performed in the reciprocal space; the coordinates &, and &,
can be interchanged on condition the corresponding change of sign before the
integral is introduced.

But there exists also another way to represent the integral (2.1)

- % [(—)(y = ge)d(x = ) + a(e — ze)d(y — yo)] = =5 (2.13)
if we note that
S = % ]{[—(3/ —ye)d(x — xc) + (v — xc)d(y — yc)] (2.13a)

is the area circumvented by a charged particle gyrating in the ordinary space upon
the influence of a constant magnetic field acting along axis z. It is evident from
(2.13) that J is proportional to S with the proportionality coefficient equal to
7~ 1a. The ratio between the area circumvented in the reciprocal space and S can

be obtained by dividing (2.12) and (2.13)

$ kydk,  4mwa? eB, 2
S YT = . 2.13b
S 7Th2 ch ( 3 )

This is a well-known result (see e.g. [10]) stating that the area circumvented by

a particle in an ordinary space can be obtained by a projection of a similar area
circumvented in the reciprocal space spanned on the variables k, and k,. However,
another application of S is that this area, labeled in the free-electron case by Sy,
is proportional to the magnetic moment M produced by a free-electron particle
when this particle 1s moving with a constant velocity

vo = (12, +02,)"* (2.13¢)

in a plane perpendicular to B,. The well-known relation between M€ and Sy is

(see e.g. [17, 18])

szree — ESO, (214)
C

where

e el
T, 2
is the electric current calculated for the free-electron gyration period T = Tj.

7=

(2.14a)

When (2.13) is applied to the free-electron action function J, labeled hence-
forth by Jy, and Sy, we obtain
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szreezfsoz_@”_‘%:_icjo; (2.14b)
in (2.14b) we took into account the definition of & given in (2.5) and the for-
mula (1.2) for the free-electron gyration frequency in a field |B| = B,. Our aim
is now to demonstrate that M identical to (2.14b) can be obtained from the
derivative of the electron energy done with respect to the field strength B, on
condition the well-known quantization rule of the electron action function is si-
multaneously taken into account [19, 20]

Jo=h (n—I—%); (2.15)

n is here an integer number. For free electrons the area in (2.12) becomes a circle,

J=1J —ih—z( 2 k2 )71'—ﬁa2 (2.12a)
T T 9 2 e T e T gyt ’
so a substitution of (2.15) into (2.12a) gives the equation
4o 4o 1 2eB 1
2 _ 1,2 2 _ _ _ z
ao_kxu—l—k‘yo = ?JO— 7 (n—|—§) = hc (n—|—§) . (216)

The corresponding square radius rZ of the electron orbit in the ordinary space,
calculated according to the formula (2.13b), is

he \” 2he 1
r2 = (eB ) ai = B (n—l— 5) . (2.16a)

Expression (2.16) is proportional solely to B, (and the constants of nature), so its

differentiation gives

d(a3)  2e 1 2e 2 h* .,  a?
_ 2 N _2e, 260 o 4y 2.17
oB. e \"1T2) TR T e T B (217

We find that the change of the electron amplitude ag in the reciprocal space is a
positive number (B, > 0). With the aid of (2.17) the expression (2.16a) gives

ort he \° 2 9 he \° a? he \’ a?
= _— ao =+ — = — 2
0B, eB, B, eB, B, eB, B,

=-2 <o, (2.17a)

which represents a well-known effect of decrease in the radius rg with an increase
n B,.

An advantage of the result obtained in (2.17) is that this formula provides
us with an expression for the B,-derivative of a2 which does not contain any
explicit dependence on the quantum level index n: although a2 itself depends on
n in the way indicated in (2.16), this dependence does not matter much for the
relation (2.17) which remains the same for all n. This is a convenient situation
because numerous physical parameters, especially the density of electron states,
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can be expressed in terms of ap. In consequence, a dependence of the electron
observables on ay makes possible for us to integrate the considered observables,
for example the magnetic moment, over ensembles of the electron states without
making any reference to the quantum number n.

An example showing the advantage of the formula (2.17) is its application
to the calculation of the magnetic moment M¢ of an individual free-electron
particle. Beginning from the energy expression of a single free electron in the
plane (ky,, ky,) [see (2.16)], we have

2 2
;L—m(kﬁu + k)= ;—mag; (2.18)

the electron mass symbol m and the Planck constant h are recovered. From a

free __
EJ_ =

definition of the magnetic moment as a derivative of the electron energy done with
respect to the field B, we obtain from (2.17) and (2.18)

HElree RZ 9 h? a2 e h?
Mfree:_ L _ _ 2y — 20 = 2
: 9B, 9m OB, (@) = -5 B, me da 0
€
=" J. 2.18
—Jo (2.18a)

This is exactly the free-electron magnetic moment (2.14b) now obtained from
the derivative of the electron energy with respect to B,: the electron energy is
changed because the amplitude ag of the electron orbit is changed with the field
strength B, . For the magnetic moment of the free-electron ensemble we obtain

e? 2 3\*/® e?
Mes = v ke [ 2) = _—0.01020V—"— B, kr. 2.1
? Vm62 157 (871') 0.010 9Vm62 i (2.19)

The result (2.19) is quite close to that obtained on the basis of the Fermi-Dirac
statistics applied to the Landau levels with the neglected spin degeneracy [5]

2 2

Mg = —ﬁV%szF = —0.008441/#321@, (2.20)

for expression (2.19) is different solely by about 15% from the result given in (2.20).
The difference can be attributed to the fact that statistics of the quantum states
used in the calculation of (2.19) is that taken from before an application of the

external field B,.

3. Orbital magnetic moment of a tightly-bound s-electron

The orbital magnetic moment of an electron bound in a crystal lattice can

be defined as

aElatt
0B, ’

E'2 ig the electron energy. Taking into account the s-states forming a band in a

MPY = — (3.1)

cubic lattice we have
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Esc = g0 _ o _ 203 cos(kyarat) + cos(kyaiase ) + cos(k; aiatt) (3.2)

for a simple cubic (sc) lattice having the lattice constant ajagt,

EPec = B0 _ o — 88 cos( kg iatt ) cos(ky aiatt ) cos(k; aract) (3.2a)

for a body-centered cubic (bcc) lattice defined by primitive translations
a; = alatt(la 1, —1), az = alatt(la -1, 1)a as = alatt(_la 1, 1)a

Bfee = g0 _ o — 48[cos(kzaiatt ) cos(kyaiast) + cos(k; arast ) cos(kyQiatt)
+ cos(kyaiatr) cos(k;atatt )] (3.2b)

for a face-centered cubic (fcc) lattice defined by primitive translations
a1 = aaee(1,1,0), as = aasc(1,0,1), a3 = anase(0,1,1) [21]. The parameters
ke, ky, and k, are Cartesian components of the wave vector k characteristic of an
electron state and the constants E(°), «, and # denote, respectively, the eigenen-
ergy of an atomic s-state, and the so-called interaction integrals of the crystal
Hamiltonian calculated between the atomic orbitals extended on the same atom
(symbol «), and the atomic orbitals located on the nearest-neighbor atoms (sym-
bol 3) [21].

The constant components of E'®* in (3.2)-(3.2b) do not contribute into
M 5o E(©) and o can be neglected. Furthermore, it seems to be convenient
to transform E'™@% with o = E(® = 0 and the constants 23 = §%¢, 83 = gbcc,
48 = gfec, for the sc, bee, and fee lattice, respectively, into the following expres-
sions:

C*¢ = 24 ()" E5¢ + cos(k,aart) = 2 — cos(kp@att) — cos(kyaiat), (3.3)

Ebcc
CPee =14 m =1 — cos(keaiatt ) cos(kyaiate), (3.3a)
1 1
5[1 + cos(kzalatt)]CfCC =3 [1 + 2 cos(k;alast) + (6fcc)_1EfCC] . (3.3b)

A characteristic feature of C°, €, and Cf¢ is that their power expansions
done for small values of parameters k;aate, ky@iare, and ks lead to the same
free-electron term

sc cc cC Ay 1
C ) Cb ) Cf = §(kz'+k5)a12att' (34)

This is a convenient form because (3.4) put equal to the free-electron energy
expression (h?/2meg)(k2 +k;) provides us with a formula for the effective electron
mass meg. Neglecting the constant terms of 2 and cos(k,aias;) in the first step
of (3.3), we obtain

for the sc lattice
mz%f = |Bsca12att|_1hza (35)

for the bcc lattice
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mege = |8 cos(ks araps a7, (3.5a)
and for the fcc lattice
mig = |81 + cos(kaian)]| 7' A7 (3.5b)

Moreover, if we put
k2 + k= ag (3.5¢)
in accordance with (2.16), the energy expressions (3.3)—(3.3b) taken on the electron

trajectory which is the cross-section line of the surface of the constant energy E'2
with the plane k, = const can be represented by the same formula [16]

Cs¢ = CPec = Cfee =1 — cos(aatsa0); (3.6)
here the subscript ¢ refers to the electron trajectory. Let us demonstrate for a

special case of the fec lattice that (3.6) applies to the electron trajectories at
any k.. Putting a = kyaiare and b = kyaiae (see (3.3b)) we have

14 (2 —cosa—cosb)cos(kyaiare) — cosacosb
1+ cos(k;aiate)

If one of parameters a, b entering (3.6a) attains the value of the amplitude of ag

Cfcc —

(3.6a)

on the trajectory of a constant energy, the other parameter is necessarily zero [16],
S0

14 [2 — cos(apaiatt) — 1] cos(k:aatt) — cos(apaast)
1 4 cos(k;aiatt)

=1 — cos(agaas)- (3.6b)

This formula, obviously independent of £, is valid for the whole trajectory of a

fecc _ pfec
Cfee = (e =

constant energy.
In the presence of the magnetic field the electrons gyrate along their trajec-
tories, so

B = [ (3.6¢)

Therefore, when (3.1) is applied to a tightly-bound s-electron in the bee lattice
taken as an example, we obtain

aEbCC a cC cC
- aéz = _E[ﬁb cos(k ajag ) OFC], (3.7)
because the derivatives of the constant terms can be neglected. Taking into account
(2.17) we obtain

bee _
MPee =

acPe da?
bce bce 1 0
MY =—-p cos(kzalatt)—aa% 9B,

Alatt @0

1 .
= —§ﬁbcc sin(aatsao) cos(k;aast ). (3.7a)

For a not too large ag we may put sin(aastao) = alaredo. A substitution of
k., = 0 done for the sake of simplicity allows us to estimate the ratio
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My ~ 1 BP(aiastan)? 2mear B (ajars)?m .
szree -9 B, 6h2a% = T .

for a single electron; M is the magnetic moment taken from (2.18a). The gbe°

integral, estimated for the 4s-electrons in a metallic iron, is approximately equal
to [22]

BPec = (.45 Ry, (3.9)

whereas the experimental aj,e¢ for the bee iron crystal is equal to 2.86x 1078 ¢cm [23].

The formula (3.8) can be expressed in terms of the Bohr magneton units by
dividing it by parameters characteristic of the first Bohr atomic orbit of hydrogen
for which we have Ry a}(2m/h*) = 1; ap is the orbit radius. This substitution
introduced into (3.8) gives

507 ()
4 latt ~
S =~ 3.3. 3.10
Ry ( an ) (3.10)

The result of (3.10) shows that the size of the magnetic moment calculated for

the tightly-bound Fe atom in a crystal lattice of metallic iron is not much different
from the weighted average of the experimental magnetic moment observed for
the Fe atom bound in the crystal lattices of metals other than Fe. For example,
the average magnetic moment of the atomic Fe measured in various second-row
transition metals (from Nb to Cd for which we assume that the binding parameters
of the Fe atom are not much different than the parameters for the same atom bound
in the metallic iron) is equal to about 2.8up [24].

4. The weak-field magnetic moment calculated for an ensemble
of the tightly-bound s-electrons in a metallic iron

Usually, an approach to the diamagnetic susceptibility of the tightly-bound
electrons in metals is classified as a not easy task [6]. A difficulty lies in obtaining,
in the first step, the Landau levels for such electrons and next in a statistical treat-
ment which is necessary to be done for ensembles of such levels. Peierls’ [2] original
proposal of the formulae for the diamagnetic susceptibility of the tightly-bound
electrons is in fact limited to a free-electron approach supplemented by the notion
of the effective electron mass, as it has been pointed out by Fréhlich [25].

Our approach is based on the lines presented in Secs. 2 and 3. First, we ex-
amine the magnetic moment for a slice of a constant k.. The change of the electron
energy due to a change of B, can be obtained beginning with the states which lie
on the circumference of the area defined by J. The length of that circumference is
represented by the derivative

a_J B aJ ac’%att B L ac’%att
dag  OCR dag  w! fag
In the second step in (4.1) we took into account that [16]

(4.1)
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aclatt -1
J _ t _
w" = ( 7 ) = w. (4'2)

In a special case of free electrons we obtain for the circumference of Jgy

0Jo  h? B
22 = 9nap = — 4.
dag AT o =5 a0 (4.3)

which is in agreement with (4.1) because
o0 _ L OEY _mek W
Bag ~ 2y Oay  eB,m 7 94
see (1.2), (2.5), and (2.18).
Any circumference of J having the length 9J/daq carries the energy propor-

ag; (4.3)

tional to

latt aJ
c T (4.4)
because, by definition, J is a surface area limited by a line of a constant energy equal
to £ and C'®% is proportional to E'® for a constant k,; see (3.3)-(3.3b). In a
plane of k, = const the expression C}*'* is a function of ag, therefore a contribution

given to the magnetic moment by the energy (4.4) is

; d aJ d a9J \ da3
circ latt _ latt <} _ _ _~ latt ¢ 0
M, - 0B, (Ct 6&0) Jal (Ct 6a0) 0B,

_ 9 faee 97\ ag
o _2a06a0 (Ct dag ) B, (4.5)

The magnetic moment for a slice of quantum states being in the plane

k, = const can be obtained from (3.7a) when: (i) the expression for MP< is
multiplied by the electron number present in an elemental area of a slice which for
the tightly-bound s-electrons is (dag is an infinitesimal increase in ag)

47@3_J dag
h? Oag (27)?
(ii) the result of multiplication is integrated in the whole interval of ag of the

occupied states in the slice (agl is the limiting ag for the slice)

(alatt)z; (4~6)

0<ap<ah. (4.7)

The fact that ajae; in (4.6) refers to the edge of an elementary cube occupied by one
electron does not matter because the density of states in an empty lattice is here
considered, and in a final result the parameter aja entering (4.6) is transformed
into that corresponding to the bcee lattice.

In general, the action function

J = J(ao) (48)
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of the tightly-bound electrons which enters (4.6) has a much more complicated
dependence on ap than the free-electron Jy given in (2.12a). But for s-electrons in
cubic lattices examined in the present paper the difference

AJ = J(ao) - Jo(ao) (49)

is not a large quantity and in the first approximation can be put equal to zero.
In effect, an estimate of the magnetic moment for a slice of the tightly-bound
s-electrons can be obtained by an integration similar to that performed for an
area of the free-electron quantum states; we neglect here also deviations from a
circular shape of the electron orbit in the (&g, ky)-space obtained in effect of the
presence of the crystal lattice. In consequence, the magnetic moment in a slice of
states is
al’ 2

Mjlice = QB ( ﬁlatt) /0 agdaoalam% Siﬂ(aoalatt) Cos(kzalatt)

latt
- _fB W{Qaglalatt Sin(aglalatt) - [(aglalatt)z — 2] COS(aglalatt) -2}
Z

X cos(k;alatt )- (4.10)

This formula can be integrated over the variable k., by making a free-electron

substitution for agl which is aol = (k3 —k2)'/?; kr is the wave vector at the Fermi
level. The density of states along the k,-axis is

L
dn, = —dk,, 4.10
" 27 ( 2)
where L is the length of the cylinder representing the metal volume. Taking the

interval of the occupied k, equal to —kp < k, < kp, the integral of (4.10) over k,

gives
L gt 2 1 79 37
B | 2 - (i ke)? + (ke )t — —— (g k)
T T 4B.7 157 it kR | 75— g5 (@mnkr)” + geman (ankr)* — mregen (arankr)
7963 37649
00 (agaeikr)® — attkr)t0 +
+ 5720648 x 102 “etFF)” ~ Sea707a384 x 107 (VenkE) T F
latt
45 Caiy k3(0.13333 — 0.21268 + 0.12763 — 0.04086 + 0.00817
6latt
~0.00112 4. )=~ L af k§0.01447, (4.11)
on condition the empty-lattice relation
1/3
Alaty [ 87 _
o <?) ke =1 (4.11a)

is assumed as approximately applicable also in the tight-binding (t.b.) case.
The convergence of the series given in (4.11), beginning with the third term
of the series, is found to be quite rapid. Basing on relation (2.13b) applied to the
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metal volume cylinder having the base S = wR2, relation (4.11a), and the formula
7R?L =V for the cylinder volume V| expression (4.11) can be transformed into

Mb = gl L Ve alatt B, kp AN 0.01447 (4.12)
7 (he)? gr) |

The ratio between M!P calculated in (4.12) and Mg® calculated in (2.19)
becomes

t.b. latt Ve 5B, kp0.01447a?, latt
%Zgas — L3 (‘7;0)62 = latt 6 ;nalatt 0.1085. (413)
Z mez Pz Fm

The size of 12t = 3P hag been estimated from a half-width of the band of the
tightly-bound 4s states in the bee iron [22]; see (3.9). A negative sign of g8t = gbee
makes M!"P a positive quantity, so the ratio (4.13) becomes a negative number.
If the volume occupied per one 4s electron of the Fe atom is considered, the edge
of the cube representing that volume is

271/8q, =2 2713 x 2.86 x 107% ecm = 2.27 x 107% cm; (4.14)

here the crystallographic data for the edge a. of the elementary cell in the a-Fe
lattice are taken into account [23]. Expression (4.14) should replace ajae entering

(4.11)—(4.13). A substitution of (3.9) and (4.14) into (4.13) gives

Mtb

| = 0:033. (4.13a)

This ratio is much smaller than a similar ratio

Mbcc .
e | =33 calculated in (3.10)

for the magnetic moment of a single tightly-bound s-electron in the bce lattice.

A reason of the difference is a strongly oscillating behavior of the expression for
M#hce obtained in (4.10).

A positive result obtained for M! of iron [see the inferences below Eq. (4.13)]
implies a non-vanishing magnetic moment above the Curie point because of the
expected only mild influence of temperature on the calculated electronic proper-
ties. In fact, the presence of the magnetic moment above the Curie point of the
metallic Fe is confirmed long time ago on the empirical basis [26].

5. Summary

The idea that the tightly-bound electrons in a crystal lattice submitted to
the action of a constant magnetic field B, behave like classical particles has been
raised rather recently by Suhl [27]. A detailed solution of the motion equations
derived in the Suhl problem, when this problem is extended to all cubic lattices,
has been done in [16].

In the present paper the old problem of diamagnetism, applied equally to
free electrons and tightly-bound s-electrons moving in a regular crystal lattice,
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has been approached in a much more simple way than that proposed before by
many authors. The main simplification is due to the fact that the dependence
of the amplitude ag of the free-electron motion in a constant magnetic field on
the strength B, of that field can be readily calculated. In the next step, this
dependence is applied in calculating the derivative of the free-electron energy with
respect to the field B,. For a single electron, the accuracy of the orbital magnetic
moment obtained in this way is checked by comparing it with the magnetic moment
calculated directly from the electric current provided by the gyrating electron
particle. A similar comparison of the former and present theory is done for the
magnetic moment of an ensemble of the free-electron particles filling the electron
gas volume.

Since energy and density number of the tightly-bound s-electrons in a crystal
lattice can be represented as functions of the same free-electron amplitude ay,
the calculation of diamagnetism of the tightly-bound electrons can be done in a
way which 1s much similar to that applied for the free-electron case. A further
simplification comes from the fact that the electron energies can be referred solely
to the states distributed along the electron trajectories in the reciprocal space [16].
This makes the corresponding tight-binding expressions for the electron energy
of an especially simple form; see (3.6). The case of 4s electrons moving in the
bee lattice of the metallic iron has been taken as an example of the numerical
calculations. Here the interaction integral of the tightly-bound electrons with the
atomic core is assumed to be a known parameter. The magnetic moment of an
individual tightly-bound s-electron (calculated for a not too large ag), as well
as that of an ensemble of the tightly-bound s-electrons, are shown, unlike the
moments of the corresponding free electron objects, to be positive numbers. This
shows a tendency of lowering the energy of an electron ensemble with an increase
in the absolute value of the magnetic field. On the other hand, the absolute value of
the magnetic moment of a single tightly-bound electron becomes evidently larger
than the analogous moment of a free-electron, but for the electron ensembles an
opposite relation between the absolute sizes of the magnetic moments is obtained.

In Appendix we demonstrate a partition of the wave-vector components, k
and k,, of a tightly-bound s-electron moving in a magnetic field into two equal
parts: one of these wave-vector parts depends solely on the electron position,
whereas the other part is equal to the electron momentum; here both parameters
of position and momentum are considered in the ordinary space. This property
of partition of ky, k, (demonstrated for the bec lattice) leads, in the first step,
to the Lorentz equation, in the next step, we obtain the equations referring the
wave-vector components to the electron momenta. The same equations which cou-
ple k;, k, with coordinates z, y and momenta p,., p, in the bee lattice can be readily
obtained for the tightly-bound s-electrons in the sc lattice, the fcc lattice, as well
as in the free-electron case; see Sec. 2.
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Appendix
Our aim is to demonstrate that components of the wave-vector parameters
€
hkx =p: + EAZ‘ = P — Y, (Al)

hky = py + %Ay = py + az, (A.la)

which characterize the motion of the tightly-bound s-electron wave packets in the
plane (z, y) being perpendicular to the magnetic field B,, satisfy the equations

1

57’1/% = ps = —ay, (A.2)

1

§hky = py = az, (A.2a)
« is a constant given in (2.5), A, = —%Bzy, Ay = %Bzx are components of the

vector potential taken in a circular gauge; see e.g. [10]. For the case of free electrons
equations (A.2) and (A.2a) are derived in Sec. 2, for the tightly-bound s-electrons
the derivation given below is limited to the case of the bce lattice; a treatment of
the tightly-bound electrons in the sc and fcc lattices is exactly the same. For the
sake of simplicity we put henceforth ajae = 1.

A convenient Hamiltonian expression for electrons in the bcee lattice becomes
that represented by (3.3a)

CP*¢ =1 — cosacosb, (A.3)
where we applied the abbreviations

a =k, =p,— ay, (A4)

b=ky =py +az. (A.4a)

From (A.3), (A.4), and (A.4a) we derive the Hamilton equations
8Cbcc

T = s =sinacosb, (A.D)
. OCPee .
g = = cosasinb, A6
6py ( )
bce
Py = —8§x = —acosasinb = —ay, (A.T)
bce
Py = —8gy = asinacosb = az. (A.8)

From (A.4), (A.4a) and (A.5)—(A.8) we obtain
& =p, —ay=2p, = —2ay = —2acosasinb, (A.9)

b= Dy + a& = 2py = 20 = 2asin a cos b. (A.9a)
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The second time differentiation of (A.9) gives

a=—2a (d sinasinb + b cos a cos b) = —2a?sin 2a, (A.10)

and precisely the same formula can be obtained from (A.9a) for the variable b.
The formula (A.10) can be transformed into inhomogeneous differential equation
for a harmonic oscillator

i+ 4o’a = —4a*(cosasina — a), (A.11)

which for a small a (and a small amplitude ag) tends to the harmonic oscillator
equation with a frequency £25°¢ = 2. Because of (2.5) we have £25°¢ proportional
to B,.

Similar calculations done for the tightly-bound s-electrons in the sc and fec
lattices give also

a=py —ay = 2p, = —2ay, (A.12)
b=p, +ai = 2p, = 2ai, (A.12a)
which are equations (A.9) and (A.9a) obtained for the bce lattice. The integration
of (A.12), (A.12a) can be performed in the same way as it was applied for free

electrons [see (2.9) and (2.9a)] giving the result presented in (A.2), (A.2a). The
frequencies of electron gyration obtained for a small ay are

25 = 2a(1 — C*)1/2 (A.13)
and

Qb = 2—a(1+cosk — ¢ cos k)12 (A.14)

(1 4 cos k,)1/2 ? ? ’

which is a k,-dependent frequency. The electron mass which should be substituted
in calculating the effective 2{2'" is that given in (3.5)—(3.5b). A solution of equa-
tions of the kind given in (A.11) can be done for any cubic lattice along the lines
outlined in [16].

References

[1] L. Landau, Z. Phys. 64, 629 (1930).

[2] R. Peierls, Z. Phys. 80, 783 (1933); ibid. 81, 186 (1933).

[3] R. Peierls, Quantum Theory of Solids, Oxford University Press, New York 1955.
[4] A.H. Wilson, Proc. Camb. Philos. Soc. 49, 292 (1953).

(5]

N.F. Mott, H. Jones, The Theory of the Properties of Metals and Alloys, University

Press, Oxford 1936.

[6] J. Callaway, Quantum Theory of the Solid State, 2nd ed., Academic, New York
1991.

[7] P.G. Harper, Proc. Phys. Soc. (London) A 68, 874 (1955).

[8] D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976).

5



[9]
[10]

—_

]

[27]

Simple Method for Calculating . .. 265

G.H. Wannier, Revs. Mod. Phys. 34, 645 (1962).

J.C. Slater, Quantum Theory of Molecules and Solids, Vol. 3, McGraw-Hill, New
York 1967.
J.M. Ziman, Principles of the Theory of Solids, University Press, Cambridge 1972.

S.J. Blundell, J. Singleton, Phys. Rev. B 53, 5609 (1996).

J. Singleton, F.L. Pratt, M. Doporto, T.J.B.M. Janssen, M. Kurmoo,
J.A.A.J. Perenboom, W. Hayes, P. Day, Phys. Rev. Lett. 68, 2500 (1992).

S.J. Blundell, A. Ardavan, J. Singleton, Phys. Rev. B 55, R6129 (1997).

A. Ardavan, J.M. Schrama, S.J. Blundell, J. Singleton, W. Hayes, M. Kurmoo,
P. Day, P. Goy, Phys. Rev. Lett. 81, 713 (1998).

S. Olszewski, T. Rolinski, T. Kwiatkowski, Phys. Rev. B 59, 3740 (1999).

H. Goldstein, Classical Mechanics, 2nd. ed., Addison-Wesley, Reading (Mas-
sachusetts) 1980.

W. Greiner, Classical Electrodynamics, Springer, New York 1998.
L. Onsager, Philos. Mag. 43, 1006 (1952).
C. Kittel, Introduction to Solid State Physics, 6th ed., Wiley, New York 1996.

J.R. Reitz, in: Solid State Physics, Eds. F. Seitz, D. Turnbull, Vol. 1, Academic,
New York 1955, p. 1.

F. Stern, Phys. Rev. 116, 1399 (1959).

B.F. Ormont, Structures of Inorganic Materials, GITTL, Moscow 1950 (in Rus-
sian).

A.M. Clogston, B.T. Matthias, M. Peter, H.J. Williams, E. Corenzwit, R.C. Sher-
wood, Phys. Rev. 125, 541 (1962).

H. Fréhlich, Elektronentheorie der Metalle, Springer, Berlin 1936.

R. Gersdorf, in: Metallic Solid Solutions, Eds. J. Friedel, A. Guinier, Benjamin,
New York 1963, p. XXVI-1.

H. Suhl, J. Phys. (Paris) 50, 2613 (1989).



