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Propagation of an intense femtosecond laser pulse through a transparent
nonlinear medium such as dielectric leads to a number of phenomena. In our
experiment we observed complex spatial, spectral, and temporal structures
appearing in the initially smooth femtosecond laser pulse when the pulse
power is comparable to or higher than the critical power for self-focusing. We
have also developed a complete, 3-dimensional theoretical model to describe
the observed phenomena.

PACS numbers: 42.65.Jx, 42.65.5f

1. Introduction

Although the chase for records in the world-shortest pulse is still open, there
is already a number of well established and developed techniques in the ultrafast
laser technology that have opened a possibility for applications outside research
laboratories. For example, in multiphoton microscopy, femtosecond laser pulses
with high instantaneous power are used to excite multiphoton fluorescence in the
sample leading to increased spatial resolution. New applications of femtosecond
laser pulses are also continuously developed. In recent proposals by two groups
[1, 2] extremely broad band femtosecond pulses are used to generate frequency
combs that enable direct comparison of optical frequencies with the cesium fre-
quency standard. This technique could, in principle, enable construction of a new
generation of frequency standards with accuracy of the order of 10~17. There are,
in principle, two reasons why people are interested in studying nature with ul-
trashort pulses. On the one hand, one can benefit from pulse duration — the
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shorter the pulses available the faster the processes that can be studied with suffi-
cient temporal resolution. This includes, among others, such phenomena as early
stages of chemical reactions [3-5], energy transfer in molecules [6-8], carrier dy-
namics in semiconductors [9-11]. The other advantage lies in power — even a pulse
with a moderate energy, if short enough, offers powers in the ranges much higher
than available from any other source [12]. For example, in the terawatt region the
field-atom interaction is far from what we expected from our low-energy based
experiences.

Experiments with femtosecond laser pulses in biophysics or physical chem-
istry are truly fascinating but here we will focus on a much simpler case. The
simplest experiment that one could think about deals with propagation of such
pulses through a transparent medium (transparent means here that we are far
from any resonances and thus the medium response is practically instantaneous).
And, as propagation is an intrinsic property of electromagnetic waves, this ex-
periment is performed every time one uses a femtosecond laser in the laboratory.
Large band width of ultrashort light pulses causes that whenever they propagate
through a dispersive medium their shape changes even in a low intensity regime
when only linear response of the medium is relevant. This can lead to distortion
of a pulse focused with a lens [13] or pulse tilting in birefringent media [14]. The
problem gets a bit more complicated when higher intensities are used. As we have
already mentioned, very short pulses easily provide high instantaneous intensities
and therefore nonlinear response of the medium cannot be neglected. Since we are
interested in isotropic media, the lowest nonlinearity to be considered 1s of the
3rd order. Thus, to analyze pulse propagation in such a case we have to take into
consideration diffraction, dispersion, as well as spatial and temporal processes re-
sulting from the third-order susceptibility. Propagation of femtosecond laser pulses
in such regime has been studied before [15-17]. It was found that, contrary to the
long pulse case, there is no catastrophic self-focusing when short (< 100 fs) pulses
are used with powers of the order of the critical power (that equals 2.6 MW for
fused silica at 800 nm). Self-focusing is avoided because of pulse splitting; a com-
bined action of dispersion and nonlinearity leads to a break-up of the pulse into
two, or more, subpulses in time domain. All the previous studies have been limited
to the measurements on the central part of the beam close to the beam axis. In
this contribution we extend these studies to the peripheral parts of the beam. We
also show that pulse splitting strongly depends on the beam size.

2. Theoretical approach

We have derived a new formulation for propagating optical pulses and cw
beams, valid to all orders in the dimensionless variables n = (wo/m)~! and
€ = (kooo)~!. Here 1y is the pulse duration, wq is the central frequency of the
pulse, kg = nowo/c is central wave vector magnitude in the medium, g is the
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transverse pulse width and ng = n(wy) is the refractive index at the central fre-
quency. This method can be applied to pulse propagation in both linear and non-
linear regimes. The application to the linear regime has been described in [18-20]
and was experimentally verified [14]. The method can be applied to propagate
extremely short pulses and extremely focused pulses and c¢cw beams without ap-
proximation. Consequently, linear near-field diffraction effects can be exactly cal-
culated in dispersive media (even non-isotropic dispersive media [19]). Here we
extend the approach of Ref. [19], which is based on a consistent and mathemat-
ically rigorous expansion of the linear dispersion relation, to include a nonlinear
optical response of the medium. Previous studies have treated nonlinearity only
to lowest orders [21-25, 15]. To go beyond these lowest-order approximations in
the nonlinearity and yet retain all orders in 1 and e, we generalize our method
by incorporating a full perturbation analysis developed by Fibich [26, 27] for cw
beams into the formulation previously used for linear pulse propagation [20]. Our
treatment is limited only by the assumption that the coupling of backscattering
modes can be neglected; we consider only a one-way propagation of the field and
do not the two-way propagation boundary matching problem [28]. The present
work is the first attempt to compare our expansion with experimental results for
propagation of a very short and strongly focused pulse in anisotropic Kerr-type
nonlinear medium.

We begin by considering the wave equation for the electric field

2 2 2
(vi - ciz%) Bl 1) = TP 1) + P, ), (1)

where P and PN" are the linear and nonlinear polarization vectors respectively,
or, in Fourier space,

(kg + k4 k2 — cizwz) E(k,w) = —w?[P"(k,w) + PNE(k,w)]. (2)

We consider the case of a linear isotropic medium where
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At first we set the nonlinear polarization term to zero. Let us assume that the
electric field and induced polarization are linearly polarized along the z-axis. Next
we rewrite the propagation equation in terms of the slowly varying envelope (SVE)
A of the electric field for a light pulse, E(x,t) = A(w,t)exp(iko - & — iwgl)&, or in
Fourier space, Fy(w, k) = Alw — wo, k — ko). The SVE multiplies the quickly
oscillating temporal and spatial terms associated with central frequency wg and
central wave vector kg = koZ = ng(wo/c)z (ng = n(wg)) in the expression for the
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electric field. Note that we have chosen the z-axis to be along the central wave
vector. Substituting the SVE into Eq. (2), changing variables w — w + wqg, k —
k + ko so as to remove the central frequency and central wave vector from the

SVE, Eq. (2) yields

w+wo><w+wO>)2

2

K24+ k2 4 (k. + ko) — (”( A(k,w) =0. (3)

We can now use an inverse Fourier transform and write Eq. (1) in terms of

the SVE as
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Equation (4) can be rearranged to take the form

0 1 0?
S A= (-vi _k2F - w) A
where the right hand side (RHS) of Eq. (4) has been written as —kZF A thereby
defining the linear differential operator F, which can be obtained as a power series
of 3/0t by expanding integrand of the RHS of Eq. (4) in w about wg, and evaluating
Fourier transform.

Our expansion takes a particularly enlightening form in dimensionless units
in which time is measured in units of temporal pulse duration 7, length in the
transverse directions is in units of the transverse pulse width o, and length in
the propagation direction z is measured in diffraction length Lpr = koag [25, 26].
The final expression of the propagation equation will be given in terms of the two
dimensionless parameters € = (koop)~! and n = (worp) L.

Equation (4) in dimensionless units of #, y, z, and ¢ may be written as

) iko 1 9\’
Lph—]4a==2 — | Lpp-
( DF@z) 2 £0+kg ( DF@z)
where the operator £, is defined as Lo = €2V3 + }"(won%). This equation can be
solved exactly to give

OvA = iko(\/1+ Lo — 1)A. (6)

It can be easily verified that Eq. (6) yields the original wave equation by adding

A, ()

ikoA to both sides of (6) and squaring the resulting equation. Operator
Oy = iko(v/1+ £ — 1) in Eq. (6) can be expanded in the Taylor series in ¢ and 5
(in spatial and temporal derivatives) [29].

We now add nonlinear polarization and for that purpose we consider
a nonlinear medium with a Kerr-type nonlinear susceptibility of the form
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ng’])cl(—w;wl, —wa,ws). The nonlinear source term in the wave equation can be

written in terms of the SVE as follows:
47 H? —4r
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Here we have assumed that the wave vector dependence of the nonlinear suscep-

tibility is unimportant. If one neglects the frequency dependence of XE?I)”, then in

the coordinate space one finds

47 §? NL 47rx(3)
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Note the presence of the two time derivative terms on the RHS of the equation. The
second term on the RHS gives rise to self-steepening and the third is a higher-order
term.

In order to develop an expansion of equation of motion for a light pulse to all
orders in 7 and € that is valid for nonlinear pulse propagation, we now introduce
(in dimensionless units) a new operator £ to replace the Lo:

a(A[P4) | ,0*(JAIPA)
a7 o ] 9)

Note that £ is z dependent through A(z,y, z,1), and does not commute with §/9z.
With the new LA we cannot obtain as simple result as Eq. (6), valid for the

(3)
LA= LoA+ “LZ [|A|2A + 2

g

linear propagation of optical pulses, but we still obtain a perturbative expansion
in the parameters € and 5. Equation (5) is now modified and becomes

9 iko 1 9\?
A= ILppo | A= — — | Lpp=—
© ( DF@z) 2 £+k3 ( DF@Z)
If we operate on Eq. (10) with @ and divide the resulting equation by k2 we find
1 ., i ,0[LA(2)]
SOA = | 2T H. 11
k%o (26 0z O() (11)

Hence, the RHS of Eq. (11) contains both §A/9z and 9A* /0= terms. To carry out
the expansion we simply replace 9A/0z with the right hand side of Eq. (10) and
JA* /8z with the RHS of the complex conjugate of Eq. (10). Next we isolate terms
of different order in €. This procedure is tedious due to the large number of terms

_ ko 1 o
A== <£+k30)A, (10)

that must be included, but 1t is mathematically rigorous. Expansion can be carried
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out using the symbolic mathematics program Maple [29], and after carrying out
the algebra for our case of an isotropic medium we finally obtain
_1 04 JA  ifawin? ?A  BawdnP 93A  ifwint 01A
L L= — SR 0 0 0
pr g, = T, > o 6 o 2 o
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We have only included the first-order time-derivative nonlinear terms and

nc

we have not included higher-order terms in € in Eq. (12). We can, however, eas-
ily obtain higher-order time-derivative and spatial-derivative nonlinear terms and
higher-order terms to any desired order in e. When all time-derivative terms are
set to zero, we recover the results of Fibich et al. for cw beams [27, 28]. When
the nonlinear coupling terms are set to zero, we trivially recover the linear pulse
propagation results [20]. Extensive studies of these results will be presented else-
where [29].

We numerically solve Eq. (12) using split step operator method [30]. The
right hand side of Eq. (12) is a sum of two kinds of operators: one diagonal in
Fourier domain and the other easily evaluated in space domain. Therefore in each
numerical step we solve our equation ignoring all the operators of the first kind,
then perform FFT of A and solve it using operators of the second kind only. This
method was shown to lead to inaccuracy proportional to Az? only. In fact it is fairly
easy to increase the accuracy up to Az?, which we actually do as was discussed
elsewhere [30]. For computational simplicity we solve our problem in (2+1)D i.e.
we neglect y-dependence of the field.

3. Experiment

As a source of femtosecond pulses we used a laser system presented in Fig. 1.
The output beam from a home-built Ti:sapphire femtosecond oscillator pumped
by all-lines argon-ion laser (Coherent Innova, 6 W) was used as a seed for the
regenerative amplifier (Coherent a-1000) pumped by a frequency-doubled Nd:YLF
(Coherent 621-D). The pulses from the amplifier were approximately 70 fs long and
centered at 800 nm. The pulse energy was 1 mJ and the repetition rate was 1 kHz.
We used a home-built FROG apparatus [31, 32] to measure temporal properties of
the pulses. The measured amplitude and phase of the pulses in time and frequency
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Fig. 1. The laser system used to generate femtosecond pulses. A commercial amplifier
system consisting of a stretcher, regenerative amplifier, and compressor is seeded with
pulses from a home-built Ti:sapphire oscillator. T1:S — titanium-doped sapphire crystal,
SL — adjustable slit, OC — output coupler, P — polarizers, OD — optical diode, PC —
Pockels cell, RM — roof mirror arrangement, G — 1200 grooves/mm gratings. Mirrors

M1, M2 are placed above beam plane; all steering mirrors are broadband dielectric.

domains are presented in Fig. 2. As is clear from Fig. 2 the pulses from our amplifier
were not transform-limited (time-band width product of approximately 0.6), as
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Fig. 2. Laser pulse amplitude and phase in time (a) and frequency (b) domain. The

amplitude and phase are marked by continuous and broken lines respectively.

indicated by a nontrivial shape of the temporal phase. This might be considered a
drawback of the setup. Actually, it is not really the case. Since we use a numerical
code to simulate the pulse propagation, we do not need a well behaving pulse
with a smooth amplitude and phase which could be well approximated by analytic
expressions. What is really important is that we are able to measure the electric
field of the laser pulse and supply this information to the numerical procedure
modeling the propagation.

There are three main parts of the experimental setup shown in Fig. 3. The
first one was used to condition the laser beam, i.e. to control its spatial properties
and pulse energy. Control over spatial properties of the beam is crucial because
the spatial distribution influences the propagation. To be able to compare the
experimental results with the numerical modeling we have to make sure that we
control the spatial properties of the beam. In addition, for efficiency reasons, the
numerical code we use is two-dimensional. It 1s an approximation which holds only

aperture from CPA
(typ. 2 mm) | (1 mJ, 1 kHz)
< 1

N E {1 f=1000
10% re | calcite ;
metal mirror M2 polarizer photodiode
sample 120 um
(fused silica) pinhole
1 \ |
collimating imaging removable
lens lens glass plate
removable .
mirror mirror on a
translation
) stage
to FROG gﬁ;%lf&riemm) to k-dependent

or spectorgraph spectra measurement

Fig. 3. Experimental setup. See text for details.
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when the laser beam has a perfect cylindrical symmetry. First, the beam passed
through an aperture with a diameter of 2 mm. This reduced the residual spread
of spectral components in the beam transversal profile (spatial chirp) that might
have been introduced in the stretcher—compressor system.

The second stage of the filtering consisted of a 1000 mm focal length fused
silica lens and an interchangeable pinhole (typically 120 pm diameter) placed in
the focus of the beam. These two elements formed a spatial filter for the wave
vectors present in the pulse. The conditions were set in such a way that, to a very
good approximation, the far field distribution in the beam behind the pinhole
was described by the Airy function. The third stage was responsible for energy
control. With a 1 mJ pulse focused to several tens of micrometers any optical
material would be easily damaged. The energies we are interested in are, at least,
two orders of magnitude lower. We also would like to have a continuous energy
adjustment. A combination of a zero-order half-wave plate and a calcite polarizer
was used for this purpose. The pulse energy was monitored with a photodiode and
a digitizing oscilloscope. The second part of the experimental setup contained the
sample and two fused silica lenses. The first lens was used to image the pinhole on
the input face of the sample which was a plane-parallel fused silica plate 7.5 mm
thick. Using imaging lenses with different focal lengths we could vary the diameter
of the beam waist while keeping the position of the waist exactly at the input face
of the sample. In this contribution we will report the results for two cases: “large
beam” and “small beam” which are markedly different. The “large beam” indicates
a focus of approximately 120 ym diameter, while the “small beam” means a focus
of approximately 20 ym diameter. The beam behind the sample was collimated
with the second lens of 15 cm focal length and directed towards the diagnostics
part of the setup. Since the focal length of this lens 1s much larger, the Rayleigh
range of the beam, the field distribution in the collimated beam corresponded to
the far field pattern.

The third part of the setup contained the diagnostic tools. Two types of mea-
surements were performed on the output pulses. Firstly, we could measure spectra
of the pulses with an imaging spectrograph equipped with a two-dimensional CCD
array (Acton Research Spectra Pro 150, SpectruMM 128 HF). By illuminating the
entrance slit of the spectrograph with the collimated output beam we could record
two-dimensional maps in the w—k,; space. The maps show the intensity of the
output beam as a function of the optical frequency w (or wavelength) and the
component of the wave vector perpendicular to the propagation direction % .
Using an adjustable iris pinhole we could also select a part of the beam (approxi-
mately 5-10%) and direct it into the FROG apparatus to determine the electrical
field of the corresponding pulse. By moving a mirror mounted on a translation
stage we could select and analyze different spatial parts of the beam. In addition,
a standard CCD camera with an infrared filter (long-pass filter at approximately
700 nm) coupled to a frame-grabber was used to register the spatial distribution
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of the beam transmitted through the sample. For the two cases mentioned above
we performed measurements with different input pulse energies starting with a
very low energy at which nonlinear effects can be neglected up to the energy of
about 2 puJ which corresponds roughly to the threshold of white light continuum
generation in the sample.

4. The experimental results

We have found that the results of the experiment are significantly different
for the two cases studied here, 1.e. “large beam” and “small beam”.

For the “large beam” case (120 ym focus diameter) which is similar to what
has been studied by others before [16, 17] we observe very little variation in the
transmitted beam shape even for high input pulse energy when significant spectral
and temporal shaping is observed. The w—k; maps for three different input pulse
energies are shown in Fig. 4. For the lowest energy the map shows a smooth
distribution — both the frequency and wave-vector spectra display no significant
structure. For higher pulse energies the frequency spectrum acquires significant
structure. Besides a fast modulation around the peak of the spectrum we observe
the beginning of spectral splitting. The splitting is very well pronounced for the

a d
b e
c f
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—>}\‘

Fig. 4. The w—ky map for the “large beam” case. (a)—(c) Experimental data for the
input pulse energy 0.1 puJ, 1 pJ, and 2 uJ. (d)—(f) Numerical modeling results for the

corresponding input pulse energies. Spectral range is 740-860 nm.
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Fig. 5. Comparison between the experimental (squares) and theoretical (line) on-axis

spectra for two different input pulse energies: 0.3 pJ (a) and 0.8 pJ (b).
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Fig. 6. An example of the temporal dependence of amplitude (line) and phase (dots)

of the pulse in the “large beam” case.

highest energy studied. In addition to the two main maxima there are also smaller
ones at higher and lower frequencies. We do not observe any dramatic changes in
the beam shape — there 1s only a slight narrowing of the distribution in the %k
direction. What is even more important, the frequency spectrum does not depend
on the k) vector. Therefore, to describe the beam properties 1t is sufficient to
measure it on the axis. The results of such measurements are shown in Figs. 5 and 6.
Figure 5 presents the pulse spectrum for two input energies. Spectral splitting is
clearly visible. It is worth mentioning that the effect 1s very reproducible. The
results of FROG measurements of the central part of the beam are shown in
Fig. 6. The pulse shows a distinct splitting in time domain. The subpulses are not
completely separated but, as they have different spectral content (which can be
deduced from the retrieved temporal phase), they would move apart from each
other if propagated further in silica.

The experimental results are quite different for the “small beam” case (20 um
focus diameter). When the input pulse energy is increased we observe very in-
teresting changes in the beam profile. This is illustrated in Fig. 7 which shows
images of the transmitted beam profile taken with the CCD camera. The first
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Fig. 7. The far field intensity distribution in the beam transmitted through the sample
in the “small beam” case. The energy of the input pulse is 0.3 pJ (a), 0.6 pJ (b), 0.8 pJ
(c), and 0.9 pJ (d).

Ky a’ w

—>7\,
Fig. 8. The w—k1 map for the “small beam” case. The energy of the input pulse was:
(a) 0.1 uJ, (b) 0.4 puJ, (c) 0.6 pJ, (d) 0.8 pJ, (e) 1.0 pJ, (f) 1.1 pJ. Spectral range is
740-860 nm.



Nonlinear Effects with Ultrashort Laser Pulses 101

image corresponds to a very small input energy at which the beam profile does not
experience any significant changes. When the input pulse energy is increased, the
beam starts to self-focus and for still higher energies well-defined rings appear. The
ring structure varies with the input energy and the general rule is that the higher
the energy the richer the ring structure. It should be mentioned that for higher
energies corresponding to a well-developed ring structure the spectral broadening
of the pulse is quite large and one can easily see a visible beam with a naked eye.
An additional slight increase in the input pulse energy leads to a strong visible
radiation — white light continuum. The w—%; maps for this case are shown in
Fig. 8. Similar to the “large beam” case, when the input energy is increased,
initially, we observe spectral splitting. For the highest energy studied here there
are at least five well defined and separated peaks in the transmitted pulse spectrum.
However, for higher energies an additional effect comes into play. Separate islands
away from the k) = 0 line appear. Those islands correspond to the rings observed
with the CCD camera. The structure of the w—k; maps is quite complex. In
particular, it is easy to notice that the spectral content of the rings is different
from the main part of the beam centered around k; = 0. The spectrum of the
rings 1s quite narrow when compared with the spectrum in the beam center. Also
the spectrum of the rings is centered around the maximum of the input pulse
spectrum.

5. Discussion

We have modeled the propagation of laser pulses in fused silica sample using
the numerical procedure described in Sec. 2. The input data for the procedure has
to include full information on both temporal and spatial properties of the input
pulse. As an input to the procedure we have used the electric field of the laser
pulse measured with the FROG apparatus. We have also assumed that the spatial
distribution of the field in the input plane of the sample results from imaging
(with proper magnification) of the pinhole. The numerical procedure allows us to
follow the pulse evolution inside the sample E(z,t). It also provides the w—k
distribution which can be directly compared with the w—k; maps measured in
the experiment. Such a comparison for the “large beam” case is shown in Fig. 4.
The agreement between the theory and experiment is quite good. In both cases we
observe spectral splitting — an initially smooth spectrum breaks into two main
and several weaker bands as the input pulse energy is increased. Also, in agreement
with the experiment, the numerical results do not show any significant spatial pulse
break-up. The quality of the agreement can be better assessed with the help of
Fig. 5 which shows measured and calculated spectra of the pulse for two input
energies. Both spectra were taken on the beam axis. Our model correctly predicts
splitting of the pulse spectrum into several bands and gives an almost perfect fit on
short wavelength side. The agreement is worse on the long wavelength side where
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the experimentally obtained peaks are shifted to the red with respect to the peaks
predicted by the model. One possible explanation for this effect might be Raman
scattering which is not included in our model. The results of the calculations (not
shown here) for the “small beam” case show only a qualitative agreement with
experiment. There are several spectral bands appearing on the beam axis with
positions and amplitudes similar to those observed in the experiment (see Fig. 8).
What is even more important, similar to the experiment, we observe development
of rings at higher input energies. Those rings have spectrum which is completely
different from the spectrum on the beam axis. Thus the model predicts most of
the features observed in the experiment. However, the qualitative agreement is not
very good. This is probably partly due to numerical effects. A very rich structure
that develops in the pulse in this case calls for using large and finely spaced grids
in both time and frequency domains. We could not do this because of our limited
computing capabilities. We are currently working on developing a more efficient
code that, we hope, will handle the calculations better.

6. Conclusions

We have observed and partially analyzed some aspects of nonlinear propaga-
tion of femtosecond laser pulses in isotropic, transparent, nonlinear media. When
the power of a tightly focused input pulse is higher than the critical power for
self-focusing both temporal and spatial pulse splitting is observed. The rings have
completely different spectra than the main part of the pulse propagating along the
beam axis. This 1s, to our knowledge, the first report on pulse spatial break-up
after nonlinear propagation in a transparent Kerr medium. All the earlier mea-
surements were limited to the beam axis. Using the numerical model for the pulse
propagation we can partially explain formation of the rings although quantitative
agreement 1s still not satisfactory. In the future we plan to develop a more effi-
cient numerical code to perform the calculations with sufficient accuracy and to
use SPIDER [33] instead of FROG to characterize the output pulses. This should
allow us to completely characterize the pulse across the beam profile.
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