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Entangled States in Interferometry
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We show how some entangled quantum states can be used to improve
interferometric measurements. We describe why Schrodinger-cat states are
very sensitive to relative-phase shifts and why relative-phase states as de-
scribed by A. Luis and L.L. Sdnchez-Soto resolve the interval [0, 27] well.
We also describe how the quantum concept of well-defined relative-phase and
the classical visibility of an interference pattern are related.

PACS numbers: 42.50.Dv

1. Introduction

Interferometric measurements is a standard technique where a relative-phase
shift between two modes is used to switch between constructive and destructive
interference in a mode where a detector is placed. The most simple examples of
this are the well-known Michelson and Mach-Zehnder interferometers [1-3]. When
a relative-phase shift # is introduced between the two interferometer modes (the
two arms), the interference between classical waves in the detector mode change
from constructive to destructive. We will illustrate some non-classical properties in
interferometry when quantum states are used instead of classical waves. Entangled
quantum states may enhance the sensitivity of an interferometer beyond what is
possible using classical light.

2. Relative phase

The unitary operator generating a relative-phase shift between two modes is

Usps () = e!¥722, (1)

where 7112 = (21 — n2)/2 is half the population difference between mode 1 and 2.
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This operator is easily derived from the Hamiltonians for the two modes, Hy =
hwiny and Hy = hwsns. The time evolution operator is given by

ﬁ(t) _ e—i(w1m+w2ﬁz)t: e—i(witwz)(R1472)t/2—i(wi—ws)(A1—Az)t/2

—ilnde i g, (2)

—=e ,
with N = 71 + n2 as the total particle number, and where the relative-phase
shift is given by ¢ = (w2 — w1)t. The first factor of Eq. (2) represents a global
phase change for a two-mode state with fixed particle number. The second factor,
[jrps((b), introduces a relative-phase shift between the two modes depending on how
large the particle number difference is. Here the phase-shift is achieved by having
different wy, for the two modes, similar results are obtained for different propagation
times for the two modes [4]. The eigenstates to the phase-shift operator are number

states

UFPS(¢)|]€’I> =¢€ |kal>a (3)
where |k, 1) = |k)mode 1 ® |[[)mode 2 defines the particle numbers for the two modes.
We have n1lk, ) = klk, 1) and nalk, 1) = Ik, 1).

We define a two-mode state |£) to have a well-defined relative-phase if the
operator Upps(¢) transforms the state |¢) into an orthogonal state |€1) = Upq(#)[€)
for at least one value of ¢. See [4] for a more detailed discussion. The obvious

ip(k—=1)/2

mathematical description of this property of |£) is

(€|Ueps(9)1€) = 0. (4)
This definition is operational since it is in principle possible to distinguish the
states |¢) and |¢1) in terms of the observable

O = )€l + o [ER ). (5)
In the case when many orthogonal states can be obtained by application of the
phase-shift operator we have a general observable distinguishing these states

6= ouléeel, (6)

where |&) = ﬁrps(¢k)|fo> with the property (€, |€m) = Snm-
2.1. Single photon states

Let us consider one photon entering an input port of a Mach—Zehnder (MZ)
interferometer. The state is described by d{|0>. (See Fig. 1 for a definition of the
field operators.) After the first beam splitter the photon is in a superposition of
being found in the two interferometer arms (modes). Thus the photon state inside
the interferometer is

1) = =

\/§(|1’0>+|0’1>)’ (7)
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where |1,0) (|0, 1)) indicates that the photon can be found in the upper (lower) in-
terferometer arm. For simplicity we have ignored phase shifts accumulated during
reflections on mirrors and beam splitters. The action of a beam splitter on the field

operators is defined by the transformation a; — %(51 —1—132) and as — %(—51 —1—132),

where aj refers to the modes before the first beam splitter and I;k to the modes
after it. Similarly for the second beam splitter. When the phase-shift operator is
applied to the state (7), we have

Uia(@)lin) = —= (0210,0) + 7/210.1)). (3)

yielding (¥1|Usps(6)|¥1) = cos(¢/2). This means that this state has a well-defined
relative-phase, since (7) and (8) are orthogonal for ¢ = x. We also note that the
two states can be detected by monitoring the output of the MZ-interferometer.
When the interferometer is balanced so that |¢1), after the second beam splitter,
is detected in one of the output modes with certainty, then ﬁrps(w)|1/)1> is detected
in the other output mode.

Fig. 1. A Mach—Zehnder interferometer. The field operators for the incoming (outgo-
ing) modes are denoted dax (ék) The modes inside the interferometer are described by

the operators by.

However, if the beam splitter is asymmetric, the state after 1t becomes

[91) = al1,0)+ 810, 1), )
where « () is the reflection (transmission) amplitude of the beam splitter satis-
fying the relation |a|? + |8]? = 1. Evaluating formula (4) one has

ls Tz 2 ® 2 a2z @ 0

{2 g (@) 2 = cos? & 4 (Jaf? — |12)2sin? & > 0,

This is greater than zero for |a| # |B|, which means that the state |t;)
does not have a well-defined relative-phase. That is, there 1s no measurement that
can distinguish the original and phase-shifted state with certainty. In a classical
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interference experiment this would be seen as a reduced visibility [5] of the interfer-
ence fringes. Later we will address the relation between visibility and well-defined
relative-phase.

2.2. N-photon states

In the previous section we saw what happened to one-photon states when
they are subject to relative-phase shifts inside a Mach—Zehnder interferometer.
The generalization to N-photon states is straightforward

_ @)
|N’0>— W

ORI - N
*|¢N>—W|O>—;J%|”’N_”>' (10)

These states are referred to as binomial states [6]. See also [7, 8] for more details

10)

on the use of such states. When the phase-shift is applied on a binomial state, one
obtains

) 3 N =0

Urps () [¥n) = Z me 2)%n, N —n). (11)

n=0

Combining Egs. (10) and (11) gives

(U lal)lin) = cos” (). (12)

The binomial states have one very special property. When the two modes are
combined on a normal 50/50-beam splitter they are the only ones that may exhibit
unit visibility". Equation (11) can be rewritten in the form

N

A I N
Urps (D)) = s 2 g D PR 0)

n=0

1 (e g e\
T VN V2 0}

The second beam splitter transforms this into

|N,0), é=m,
0,N), ¢=0.

Detection of N photons in mode ¢; and zero photons in ¢y implies that the

1 . R 1N
[tout) = W [sm(d)/?)c{ + cos(d)/?)c;] [0} = {

relative-phase introduced inside the interferometer was . The opposite situation
indicates that the phase shift was zero.

1t is easy to prove that only a binomial state can produce the states |N,0) and |0, N) after
the last beam splitter. Invert the unitary transformation of the beam splitter, apply it to the
state [N,0) or [0, N).
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2.8. Sensitivity to change in relative-phase

It is of interest to do interferometry with light states that are highly sensitive
to a change in the relative-phase. This could ultimately enable us to detect very
small changes in the interferometer arms, for instance in a gravitational wave
detector [9]. Tt is possible to increase the sensitivity of the state |¢1) in Eq. (7)
by adding more particles to each mode. Such Schrodinger-cat energy eigenstates
have the form [10-12]:

[Un) = —= (IN,0) +10,N)), (15)

1
V2

and these states require small relative-phase shifts to become orthogonal. We have

IlUa()) = cos (52

The sensitivity for a change in relative-phase for Schrodinger-cat states increases
with increasing number of particles in the state. A phase shift of #/N brings [¥y)
to an orthogonal state. However, the phase resolution is not very good, since only
two mutually orthogonal states can be obtained applying a relative-phase shift.
We also note that it is not possible to distinguish these two states using a regular
beam splitter, since the Schrodinger-cat state and the binomial states are different
for N > 1.

Of significant interest for many interferometric applications would be to con-
struct a state such that a number of small relative-phase shifts give several mutu-
ally orthogonal states. These could, in principle, be detected with certainty.

This could be achieved by using an equally weighted superposition of the
eigenstates of the relative-phase operator, which were defined by Luis and Sanchez-
-Soto [13]. For N photons such a relative-phase state takes the form

6y = WZ e | N = n), (16)

where (;SE«N) = EN) + ﬁ,:_’”l ,with »=0,1,..., N. With N photons these form N +1

orthogonal states. Assuming QSE)N) = 0 one has for r =0

6") = Z |, N (17)

Applying the phase-shift operator on this state one finds
~ 27r (N) _ (N)
Ui (s ) 1667) = 166, (15)

Hence, all the N + 1 different relative-phase states can be obtained by different
relative-phase shifts on one of the states. We see that Eq. (4) becomes
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sin(N + 1)%Z
(N + 1)sin ﬁg ’

In Fig. 2 we compare the relative-phase state with the

(65 Unps (0)|0f™)) =
27r
N1
Schrédinger-cat state by plotting the overlap (€|Ups()[€), for |€) = |¢£«N)> and
|€) = |¥n) with N = 3.

which 1s zero for ¢ =

Phase state

¢

h -
V ot

- -n/2 —x/3 0 /3 w2 Fid
relative-phase shift
Fig. 2. A plot of {(£|U.p:(4)|€) as a function of the relative-phase shift for both the
relative-phase state in Eq. (16) and the Schrédinger-cat state in Eq. (15). In both cases
the number of photons is N = 3. Note that the cat state becomes orthogonal more
rapidly, and that the phase state does not return to unit overlap as the cat state does
(at ¢ = £27/3). The three different phase-shifted relative-phase states at ¢ = £ /2
and ¢ = +r are all orthogonal, whereas the points ¢ = +x/3 and ¢ = +x correspond

to the same state for the Schrodinger-cat state.

2.4. Entanglement and relative-phase states

To produce relative-phase states in the lab 1s a challenge for high particle
numbers. The reason for this is that states of the form

e =)

are highly entangled. Actually, the states carry only information about correlations

) =

between the two modes. This can be seen from the entropy of the reduced density
operator for one of the modes. We have p12 = |¢)(¢|. The reduced density operator
for mode 1 (2) is formed by the partial trace over mode 2 (1)

pr ="Try [p12] = N+1Z|

pz = Try [p12] = N+1Z|
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This density operator maximizes the von Neumann entropy S(p) = —Tr [plog p].
For p1 the entropy becomes log(N + 1), meaning that we lack log(N + 1) bits of
information about the state if we look at only one of the modes. This is the full
capacity of N + 1 states, so the state carries no information about the individual
modes. If both modes are considered we have S(p12) = 0. This means that we have
access to log(N 4 1) bits of information about the relation between the two modes.
This is not surprising, since the relative-phase states express a relation between
the two modes, and if we wish to know as much as possible about this relation
we should not waste the information capacity of the state to describe properties
of the individual modes. We therefore can conclude that the relative-phase states
are optimal in resolving relative-phases from this reasoning about the entropy.

To produce entangled photon state with several particles is difficult, the
present methods are based on parametric down conversion and may yield four-
-photon states [14, 15]. To go beyond that is an experimental challenge. For two
photons the relative-phase states have been implemented using down-converted
photon pairs [16], a similar technique can also be employed to produce states that
are very sensitive to spatial rotations [17, 18].

3. Visibility and well-defined relative phase

From the previous section we learned that in many cases we can distinguish
states with different (well-defined) relative-phases in terms of visibility in an in-
terference experiment. Is this general? First, we note that if the interferometer is
a regular Mach—Zehnder interferometer with regular beam splitters, then only the
binomial states, and superpositions and mixtures of these, could exhibit unit visi-
bility. However, we may build very general interferometric instruments where the
beam splitters are replaced with general lossless unitary transformations acting
on the two modes (generalized beam splitters). A general two-mode state can be
written

|€) = Z ch7N|n,N— n). (19)

N=0n=0

We denote the operation of a generalized unitary beam splitter by Ugbs. The
operator must also be [ossless so that the number of particle in the two outgoing
modes is the same as in the incoming modes. This may act upon the general
two-mode state yielding Ugbs|€> = |€). To reach full visibility we require that it
1s possible to find a relative-phase shift such that the number of particles in the
detector modes reaches zero. This is seen from the definition of visibility

_ {#)max = (M)min

~ {(M)max + (1) min
which becomes unity only if (R)min = 0. This means that the following relations

, (20)

must be satisfied if we wish to separate two states generated by a relative-phase
shift using two detectors:
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UgisUrps (61)[€) = €' |) @ |0), (21)

Usos Urps(92)1€) = €€'[0) @ |@), (22)
where ¢ and ¢’ are possible global phase factors. The scalar product of the left
hand sides of Eqs. (21) and (22) becomes

<€|U1“Tps(¢2)UgTbsUgbsUrps(¢l)|€> = <€|Urps(_¢2)[jrps(¢l)|€>
= <€|U1‘ps(¢1 - ¢2)|€>, (23)

where the unitarity of the generalized beam splitter has been used. The definition
of the relative-phase shift operator has also been used. The scalar product of the
right hand side is

= 0[) (@]0) = €7D0, 0[¢)(€]0, 0) = €<V [0, 0¢) |2, (24)

which follows from the lossless operation (particle number conservation) of the
unitary beam splitter. Combining the results of Eqgs. (23) and (24) gives a condition
for unit visibility

(€1 Urps(9)1€)] = 1{0, 0[€) . (25)
This is different from the definition of well-defined relative-phase given by Eq. (4).
The reason is as follows: If the initial state |¢) has a vacuum component we see
that any state obtained from it by a relative-phase shift also will have a vacuum
component since Upps(¢)]0,0) = [0, 0). If the photon counters see no photons (de-
tecting the vacuum) it is impossible to tell different relative-phase shifts apart.
However, the vacuum component does not change the visibility.

3.1. The two-mode coherent state, an example

Let |¢) be a two-mode coherent state with equal complex amplitudes in the
two modes

|n, m).

| > | |2 o O[nO[m
o, )=e ¢ Z —_—
’ valvm!

n,m=0

Then the relative phase shift gives

Fn(@lln o) =¥ 3 (R
= |ei¢/2a,e_i¢/2a>.

We see that this state does not have a well-defined relative-phase since
(a, a|ei¢/2a,e_¢/2a> _ e—2|a|2(1—cos¢/2)’ (26)

which is greater than zero for all ¢ and «, in contrast to what is required by Eq. (4).
The probability to find the coherent state in the vacuum state is |{0, 0]a, a)|? =

e=2lal® This means that the condition for unit visibility, Eq. (25), is satisfied for
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‘<(x,(x‘0'p:(¢)‘(x,(x>‘

Overlap

Unit visibility
I

|
1 Never well-defined
1

‘<0’0‘a’a>‘ ) relative-phase

relative-phase shift

Fig. 3. A plot of {o, 0|Usps()|a,a). At ¢ = 7 the condition for unit visibility is sat-
isfied, but the condition for well-defined relative-phase is never satisfied. Hence, the
classical coherent state is an example of a state which may exhibit unit visibility in

interferometry but lacks a well-defined relative-phase.

¢ = 7w even if the relative-phase between the two modes 1s not well-defined. This is
probably easiest to understand when the coherent state is viewed as a superposition
of binomial states, with a vacuum component. This property is illustrated in Fig. 3.

4. Conclusions

We have illustrated some properties of the relative-phase operator. A state
with well-defined relative phase is defined operationally by Eq. (4). To resolve
changes in relative-phase well it is argued that relative-phase states [13] are op-
timal because of their highly entangled nature. Using tailored quantum states in
interferometers enhances their resolving power beyond what is possible using clas-
sical light. Unfortunately, such states are hard to produce and require very special
detection techniques since the commonly used visibility differs from the concept
of well-defined relative-phase.

We thank A. Trifonov, S. Inoue, and F. Bretenaker for many fruitful discus-
sions on the topics of this paper. B.H. thanks EOS for the invitation to EOSAM2001
where this work was presented.
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