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The effective soliton velocity in the presence of a periodic background
differs from that when a soliton propagates alone. Using approximate rela-
tions for the Riemann-theta functions, the effective soliton velocity is derived
and discussed. General relations are illustrated by examples of Korteweg de
Vries and sine-Gordon equations because of the application in the Josephson
junction theory.

PACS numbers: 42.50.Md, 42.81.Dp, 74.50.4r, 85.25.Cp

1. Introduction

There exists a lot of physical problems which can be modeled by the soliton
propagation on a periodic background. In such a situation solitons play a role of
localized excitements and periodic phases mimic a phonon, lattice or magnetic field
background. As a rule, the background of this type is periodic or quasi-periodic.
This problem has a long tradition, starting from the Rubinstein paper [1], where
the perturbative method for the sine-Gordon (sG) partial differential equation was
considered in order to determine a mutual interaction. The fluxon propagation in
the ring Josephson junction in the presence of defects [2, 3] or in the junction
polarized either by the dc current or de external magnetic field [4] make another
examples. The lattice of defects in the first example or dc background in the second
one can be considered as a periodic phase and the propagation of distinguished
excitements is modified by the presence of these backgrounds. The problem of
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finding this effective velocity appears also in other physical situations, where lo-
calized excitations appear together with delocalized background perturbation and
the principle of superposition cannot be applied.

2. “Mixed” solution of sG equation

As it 1s commonly known from the soliton theory, due to the interaction of a
localized soliton with a periodic process, only the phase shift appears (see Fig. 1).
The same conclusion relates to an interaction with periodic process since the sim-
plest periodic process emerging from sG equation (sGe) formally can be considered
as a sum of an infinite number of solitons shifted equidistantly in space [5]. The
relevant relation has the following form:

= 1 —1iexpa — 1expa 1
. — n . " —

u(z,t) = ;21111 (m) + ;21111 (m) , (1)
where a, = kz —wt + 27inb, and the b constant is roughly speaking proportional
to its period. (Unfortunately this interpretation is valid only for a single phase
periodic solution.)

Fig. 1. The 3-phases solution of sine-Gordon equation, i.e. one antisoliton interacts

with the quasi-periodic phase. Its effective velocity has the form of Eq. (10).

As a consequence of the periodically repeated phase shifts, the velocity of the
soliton is changed. This means that its velocity (which is equal to w/&, when the
soliton propagates alone), due to the series of phase shifts induced by a periodic
process, 1s changed and the soliton travels with another velocity which we denote
as the “effective velocity”.

We relate these general statements to the sG equation, just because of
the Rubinstein paper, although all considerations are valid also for the other
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soliton-type equations. The formalism bases on the extraction of the soliton phase
from a solution which represents a multiphase quasiperiodic process.

The first attempt to this problem one can find in the above-mentioned Ru-
binstein paper [1]. Since at that time (1982) an exact solution was unknown, the
author analyzed the interaction of the soliton with a small, perturbative periodic
process and found a phase shift and dispersion parameters of the localized single
kink solution of the sine-Gordon equation.

In contrast to this approach we consider the exact, mixed solution of sine-
-Gordon equation [6]. As a starting point, the solution, in a form of the kink on a
periodic background (of sG equation), can be written as

oo R*(2,B)

u(z,t) = 2iln m, (2)
where R(z,B) = O(zp|Bpp) + exp(i2745)O(2p + Bsp|Bpp), 2 = (2s,2p), 2s =
ksx +wst+ 205, 2p = kpx +wpt+ z0p,, 20s and zgp are arbitrary constants. Indices
s and p refer to soliton and periodic processes, respectively. @ is the Riemann-theta
function (or Jacobi ¥s function) of the argument z, and parameter By, [7]

oQ

O(zp|Bpp) = Z exp [in(2zpn + Bppn®)]. (3)

n—=—oo

The propagation constants ks, kp and angular velocities ws, wp of the soliton
and periodic phases are determined by a system of relevant algebraic dispersion
equations [8]. In the case of the two-phase solution of sG equation it has the
following form of a four-equation system:

: 0 1

igl(kikj - Wiwj)mwa(w)w:O + Z(éa,e —6c0) =0, (4)
for e = (0,0),(1,0),(0,1),(1,1), where e = (1,1), b . is the Kronecker symbol and
We(w) are the known coefficients [9]. As the first step, one obtains parameters of
the periodic process and these are independent of the existence of soliton phase. In
contrast, the soliton parameters depend on parameters of periodic phase. From the
dispersion equations (4) it is seen that the periodic process changes the parameters
(ks,ws) of the coexisting soliton process.

Relation (2) can be derived as a limiting procedure applied with respect to

the two-phase quasi-periodic solution when the imaginary part of some B-matrix
diagonal element tends to infinity
iDss 4 Bss BSP

Bps BPP ) ’ (5)

where D% := diag (ImB*). When the trick (5) is repeated with respect to both
phases; R(z, B) = 1 +i(exp (1 + exp(2) — exp(¢1 + {2 + Fi12) and we arrive at the
famous double-soliton formula [10].

Dss—co ZP

25 %Dssds ]

R(Z,B)(syp) = lim @(
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In our case the mixed exact solution of sG equation has the following form:
[©(zp|Bpp) + exp(i2725)O(2p + Bep | Bpp)]” . (6)
O(zp|Bpp) + exp(i2725)O(2p + Bsp|Bpp)

When we are looking for a soliton propagating on the background of an oscilla-

u(z, B) = 2iln

tory periodic process, the requirements of the real solutions of sGe are as follows:
zs = 1/4+1n, zp = i and Bs, = —ib, Bpp = 1/2 + i3, where 1,£,b, and § are
real. We neglect initial positions given by zos and zop.

It is important to note that the obviously known relation w? — k% = 1 is
true only for “pure” soliton solutions of sG equation. In our mixed case of course

w2 — k241

3. Effective velocity for a mixed solution of sGe

The approximate formula for the first order @ function (Jacobi function)
valid for our approach when § < 1 is

(9(77—1—15%—1—16)

ﬁexp (-m%) exp [%(52 _ 772)] [1 +exp (171'%)] , (7)

which when n = 7 = 0 reduces to the commonly known relation [11].

R

Substituting (7) into (6), after simple manipulations, our mixed solution of
sGe in case of a single soliton interacting with a (single) periodic (oscillatory)
phase has the approximate form

B . 1—1dexp [—271'(577 +b¢) — 7"[’2]
U(fﬂ],baﬁ) =m+2in 1+1exp [—27‘((67] + bf) - 7Tb2]

= 7+ 4arctan {exp [—27(8n + b¢) — 7b*] } . (8)

It is seen that it represents a single soliton solution of sGe, but with a new ve-

locity and shifted by —b%/23. Since arguments are linear in the space and time
coordinates £ = kpx + wpt, n = ks + wst, then

Bn + b€ = x(Bks + bkp) + t(Bws + bwp), (9)
which means that the effective velocity veg of this soliton is

weff  Pws + bwp
— 10
keff Bks + bkp ’ ( )

where ws, ks are ascribed to the soliton process and wy, kp — to the periodic one.

Veff =

It is seen that this velocity differs from the (“phase”) soliton velocity
vs = ws/ks. Since b stands for the coupling between a soliton and periodic pro-
cesses, the stronger coupling — the bigger changes keg and weg. On the other
side, B is roughly speaking proportional to the period of periodic process. Then
when this period is bigger, veg 1s closer to vs.
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Although the dispersion relations give the expression f(b, kp, wp) = 0, but un-
fortunately also ks = kq(b, 3, kp,wp) and ws = we(b, 3, kp,wp) and thus the change
of 8 in (10) gives rise to changes of ks and ws too, and only kp and wy re-
main unchanged. Therefore (10) have to be read as vexr = [Bws(b, B, kp, wp) +bwp]/
[Bks(b, B, kp, wp) + bkp].

Similar relations can be achieved for soliton propagating on the background
of rotational periodic process where the phase is growing monotonically in time.
Equation (6) is still valid, but now z, = 1/4+1in, z, = 1/4+i€ and By, = —ib,
Bpp = 1, where 5, £, b, and § are real. Repeating the procedure as above, we
have

u(§,n,b,8) = _oxb 4 ojiy Lo iexp[=2m(fns 4 bE — 5)°]

Jé; 1+ iexp[—27(Bns + b€ — 5)]

(11)

This represents, once more a single soliton solution but with a term linearly
growing in time (or space) —27£/3, shifted by s = (6/2)(b—i/2). Note that besides
the complex shift the whole approximate single soliton solution remains real. The
effective velocity is given by (10), as before.

4. Effective velocity for mixed solution of Korteweg de Vries

Another example, even simpler than sGe, is the Korteweg de Vries (KdV)
equation. Starting from the mixed solution of KdV equation, we obtain a similar
single soliton-like solution with a constant background

u(z,t) = {In[O(zp|Bpp) + explim(225)]O(2p + BSP|BPP)]}xx

_ P
=5

with the meaning of symbols and all comments as before.

kp? + {In[1 4 exp(27[(Bks 4 bkp)x + (Bws + bwp)t — b2 /2] ew (12)

The same approach can be applied to a single soliton process on the two-phase
quasi-periodic background. For simplicity we confine ourselves to the KdV equa-
tion.

The starting solution in this case has the form

B B
wz,t)=4Ind “ H 2
Z2 Bis Bas
B B B
+exp (i2723)0 z1 + D13 11 12 ’ (13)
z9 + Bas Bis Bas oo

with z; =&, Bjr =18k, (&5, 05x) € R, 1,5 = 1,2,3. Indices 1, 2 relate to periodic
phases and index 3 to the soliton one.
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Using the approximate relation for the second order © function with the

imaginary matrix B and arguments, similarly as before, in case of the Jacobi

functions (7), we obtain
@( i&] [iﬁn iﬁnD
1§o 1812 P20

= / / exp[—m(261n + 26am + Brin? + 2B12nm + Faam?)]dndm

1 ox [7(511@ + F226f — 26126162) (14)
/P11 B2z — B, B11822 — B3

for 811822 — Bf, < 1, and next

u(z,t) =< In 1 exp ™ (61155 + Bo2€f — 25125152)
’ VBi1Paz — B, G112 — By
1

e () e

% ex 7T [511(52 - 523)2 + B22(&1 — 513)2 —2612(&1 — B1s) (&2 — 523)] (15)
’ G112 — B n

Another version of an approximate relation was reported in [12].
Since & = kjx 4+ w;t, j =1,2,3, then

u=I+[n(l+expy)l,,; (16)

where

I =2x(fr1ks + Bosks — 2812kok1)/ A, A= fr1f22 — 5%2,

v = =2n[(pk2 + ¢k1 + k3s)x + (pwa2 + qui + w3)t + §] (17)

and

p= (511523 - 512513)/A, q= (513522 - 512523)/A,

s = (2812513023 — B11833 — B22fis)/2A.
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5. Conclusions

It is seen once more that the expression (16) represents a single soliton
solution with modified ke and wegr. Thus, the effective velocity of a soliton on the
two-phase periodic background is equal to

Weff _ W3 + (quwi + pwa) (18)
ket ks + (qk1 + pk2) ’

where the terms in parenthesis appeared due to the interaction with the back-

Veff =

ground. One can discuss of course whether and when this contribution is small or
large.
The analogous approach can be applied to other soliton-type equations.
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