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Introduction to Quantum Hall Effects

K.I. WYSOKINSKI*

Institute of Physics, M. Curie-Sktodowska University
Radziszewskiego 10, 20-031 Lublin, Poland

The quantum Hall effect is a set of phenomena observed at low tem-
perature in a two-dimensional electron gas subject to a strong perpendicular
magnetic field. It manifests itself as a quantization of the nondiagonal ele-
ments (pay) of the resistivity tensor accompanied by simultaneous vanishing
pzz for ranges of the magnetic field. For the integer quantum Hall effect
pzy = h/ve?, where h is the Planck constant, e — charge of an electron and
v is an integer, while for the fractional quantum Hall effect v is a simple
fraction. In spite of similar phenomenology deep and profound differences
exist between these two effects. In the lecture the precision of the Hall quan-
tization in the integer quantum Hall effect and briefly new types of quantum
fluids observed in the fractional quantum Hall effect are discussed. Some re-
cent theoretical and experimental discoveries connected with quantum Hall
liquids are also mentioned.

PACS numbers: 73.43.—f, 73.40.—c, 73.50.Fq

1. Introduction

The phenomenon known as the Hall effect has been discovered in 1879 by
Edwin Herbert Hall — at that time the graduate student at John Hopkins Univer-
sity in Maryland. One considers a metallic slab of thickness d and applies magnetic
field B perpendicularly to it in the presence of current I flowing along the slab
(see Fig. 1). As a result the voltage Vi1 appears across the sample. Tt is due to
the Lorentz force F = qE + qv X B acting on a charge ¢ moving with velocity v
in a magnetic field B. The Hall resistance [, defined as a ratio of voltage Vu
across the sample (y-direction) to the current I, flowing along the sample (i.e. in
z-direction) is found

B
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where N; = nd is the number of carriers per unit area and n — their concentration.

Rey =

*e.mail: karol@tytan.umcs.lublin.pl

(287)



288 K.I. Wysokuisk:

Fig. 1. The standard geometry used in the studies of the Hall effect in 3-dimensional

samples and quantum Hall effects in 2-dimensional electron (or hole) gas.

Measurements of the Hall resistance (or more often the Hall coefficient Ry =
Ry, /B) give information on the carrier density n and their sign ¢ = +e. For a given
material (as characterized by n, d, and ¢) the measured value of R;, does depend
on a magnetic field acting upon a sample. This simple fact is a basic principle
of recently constructed quantum Hall probe microscopes [2] successfully used to
measure magnetic field distribution around vortices in type Il superconductors.

The quantum Hall effect (QHE) is a set of phenomena observed in a two-di-
mensional electron (or hole) gas. Similarly as in the Hall effect (which is purely
classical phenomenon) one measures a voltage across the sample placed in a strong
magnetic field. Again the voltage arises in response to the current flowing along
the sample. The low temperature measurements [3] of the Hall resistance of a
two-dimensional electron gas as a function of magnetic field have unexpectedly re-
vealed strongly nonlinear behavior of Ry, (B) for high enough fields. It manifests
itself as a series of plateaux, extending over a range of magnetic fields in devices
in which carrier concentration is kept constant (as in GaAs/AlGaAs heterostruc-
tures). To very high accuracy on a plateau one measures

h  25812.807 []

n,e? n,

Ryy =

, (2)

where & 1s Planck constant, e — electron charge and n, is a number.

We distinguish integer QHE (IQHE) when n, is an integer 1, 2, 3. .. and frac-
tional QHE (FQHE) when the measured Hall resistance corresponds to n, = p/q,
and p and ¢ are relatively prime integers. The appearance of the plateaux in Ry
is in both cases accompanied by vanishing (in low enough temperatures) the lon-
gitudinal resistance Ry = I /Vy, where V is the voltage drop along the sample.

Even though the macroscopic manifestations of both effects is to a large
extent the same, the physics behind them seem to be very different as will be seen
in the following.
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In Sec. 2 a number of issues related to IQHE, inter alia its understanding and
precision of resistivity quantization will be discussed. These include the importance
of two-dimensionality, impurities, and the role of temperature and other aspects
together with the breakdown of the effect. The fractional QHE is briefly introduced
in Sec. 3. A short summary is given in Sec. 4.

2. The integer quantum Hall effect

The integer quantum Hall effect was discovered in 1980 by von Klitzing,
Dorda, and Pepper [3]. Figure 2 shows a series of well-developed plateaus in the
Hall resistance of the two-dimensional electron gas formed in the GaAsAlGaAs
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Fig. 2. The measurements on the very high mobility 2DEG showing integer and frac-
tional quantum Hall steps reproduced from Ref. [19] with the author permission (upper

part) and the oscillations of the longitudinal resistance (lower part).
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heterostructure. Remarkably the value of the Hall resistivity on the plateau is
to high accuracy given by (2). In the original paper [3] the precision of 107° of
quantization was observed. Shortly after the discovery of IQHE it turned out that
the absolute precision of quantization of Ry, is of the order of 10® or better [4] and
the agreement between measurements on different devices is of the order of 101° [5].
As a result the Hall resistance has been adopted as an international standard of
resistance [6].

To understand the high precision of the measurement it is important to
realize that in two dimensions the Hall resistance R;, and Hall resistivity pg,
coincide (notation as in Fig. 1)

Ry = ? = L;}/Lj;y = % = oy (3)

This means that a single and potentially very accurate “electric measurement”

of Ryy suffices for the determination of resistivity pey,. To get the information on

the other component of the tensor, i.e. the longitudinal resistivity pzsz, both the

knowledge of Ry, and sample dimensions L;, L, are necessary as
Ve By lLg Ly

Rxx—ﬂ—j_xz—pxxz~ (4)
The measurements of L, and Ly, however, are never very precise. Note, in two
dimensions the resistances and resistivities are expressed in the same units, namely
ohms.

Note also that in two-dimensional system under consideration the symme-
tries 0yy = Ozz, Opy = —0y; hold and the matrix elements of resistivity tensor
Pap are proportional to the corresponding elements of conductivity tensor g,
e.g par = Ouu(03, + Uazry)_l'

Three broad subjects connected with the IQHE will be discussed here. These
include (i) the precision of the quantizations, i.e. the appearance of the flat plateaux
for a range of magnetic fields, (ii) the transition region between the consecutive
plateaux in which pg. takes on non-zero values and (iii) the breakdown of the

IQHE.
2.1. On a plateau: precision of the quantization

As it is seen in Fig. 2 each plateau in pzy 1s accompanied by vanishing lon-
gitudinal resistivity pz;. The absolute value of longitudinal resistance R;, mea-
sured in the Hall plateau is as low as 107!° Q/0O. This is a lower value than in
any non-superconducting material. The IQHE has been observed in various sys-
tems containing two-dimensional gas of carriers. The results do not depend on
a material, geometry of the sample, etc. The IQHE, however, is a low tempera-
ture effect. With increasing temperature the quantization accuracy is lowered, the
plateaus become narrower and eventually vanish, the longitudinal resistivity takes
on non-zero values.
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Before we start with theoretical explanation of the IQHE we have to note
another aspect connected with the precision of quantization. Assuming a typical
electron concentration in 2DEG of the order of 2 x 10! ecm~2 and typical di-
mensions of the sample 260 pmx400 pm [7] we find the number of electrons in
a two-dimensional channel N a2 2 x 10%. Thus the precision of quantization is of
the order of 1/N instead of expected, on statistical grounds, much lower precision
1/\/N ~ 10~% connected with fluctuations of physical parameters in the many
body system.

2.1.1. Two-dimensional electrons in crossed E and B fields

It turns out that the IQHE can be understood solely in terms of single particle
considerations. Thus we start with the ideal 2DEG in perpendicular magnetic B
and electric E fields. Consider a typical Hall sample, as shown in Fig. 1 of area
L. Ly placed in perpendicular magnetic field B = (0,0, B). The Hall voltage Vi
across the sample is a source of the electric field £ = (0, £, 0). The single electron
Hamiltonian is given by

1 (0 S A, ’

where Ve(#,y) is the confining potential, while Vimp (#, y) represents the electron-
-impurity scattering potential. The Schrodinger equation Hey = Ey with Ve(z,y)
and Vimp(#,y) can be solved only numerically. Without these two potentials the
problem is exactly solvable. Using the Landau gauge for a vector potential A =
(—=By + $A2,0,0) (so B=rotA = (0,0,B) for §A, = const) and writing the
electron wave function in the form of ¥(z,y) = (1/v/Ls)exp(ikz)pr(z) we get
equation

L (hk — eBy + e6Az)* — Ui ﬁ + eEy] or(z) = (k) (y) (6)
2m* v 2m* Jy? ’

which is an equation for the displaced one-dimensional harmonic oscillator. Its

solutions are expressed in terms of Hermite polynomials H, as

1 (y — yk)z] Y= U
onk(y) = ——=exp [— H, , (7)
A /2nnlm 2[2 l

where n = 1,2,..., Hy(z) = (—)" exp(z?)(d/dz)" exp(—z?) is the n-th Hermite
polynomial and [ = \/h/eB denotes magnetic length. The wave function ¢,x(y) is
seen to be centered around y. = yi, which in turn depends on the wave vector k.
Explicitly
eEBl? n 1
hw, B

and the eigenenergies become

Yk =Pk —

§ Ay (8)
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The spectrum has a linear dispersion. It consists of narrow bands separated by

energy gaps hw, = heB/m*, where m* is the effective mass of electrons in the
system. For typical values of parameters hw, &= 1 meV. Note that for the van-
ishing electric field (£ = 0) the spectrum consists of degenerate Landau levels.
To find the degeneracy g, we assume the periodic boundary conditions in z di-
rection; ¥(0,y) = ¥(Lsz,y). This limits the allowed values of k to k = (2x/Ly)r,
r = 0,421,422, .. .. The distance Ak between neighboring k states is (27/Ly). Be-
cause the center of wave function with the wave vector k located at y; as given
by (8) has to fall inside the sample width, i.e. 0 < y < Ly, the total degeneracy
gn of the n-th Landau level is found to be

Ly LyLy LyLyeB @
n = = = = = —, 1
In=9= Ak T 2a2 h 0 (10)
where ¢ = L, Ly B is the magnetic flux through the sample area and ¢o = h/e is the

flux quantum. The ratio between the electron density N/ Ly L, and the degeneracy
g is called the filling factor v = Nh/eB.

2.1.2. The appearance of a plateau: the role of disorder

Imagine now that a number of Landau levels, say n, is fully occupied. It
means that the electron density Ny = gn/L.L, = neB/h. If this is plugged into
Eq. (1) then we get

B Bh h
eN, e-neB  ne? (1)
in agreement with (2). Unfortunately, this does not yet explain the QHE, because

Rn

we have only shown that for a very special density of electrons the Hall resistance
takes on a very special value. Had one changed the electron density so the number
of current currying states would increase and Ry would also change linearly with
B in complete disagreement with experiment.

In a real, impure system some states are localized and the number of current
carrying states is smaller than the one found above. Moreover, all other states are
scattered by impurities and there 1s no reason for the quantization. If however we
observe quantum values of pg,, as experiments show, it is so only because of some
lucky compensation, which takes place. It turns out that the impurity potential
which localizes some states, changes other states in such a way that they carry
more current — exactly compensating for those that do not. This follows from
the exact solution of the Hamiltonian (5) with the single short range impurity
potential [8] and the scattering theory for general class of impurity potentials [9].

Somewhat different and in fact even more general explanation of the integer
Hall plateaux and their independence of disorder has been proposed by Laugh-
lin [10]. Let us imagine a two-dimensional system bent into a loop of circumfer-
ence L (see Fig. 3) with magnetic field piercing its surface and current I flowing
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Fig. 3. The geometry used to explain the appearance of the quantum Hall plateaux.

around 1t. A long thin solenoid at the center of a loop 1s a source of flux ¢. By
changing the flux ¢ one induces an electromotive force Ving = —d¢/d¢, acting on
the electrons at the cylinder surface. The work done, Vi,q/Idt, equals the change
in the internal energy dU of the system

dU

1= vy (12)
and we find that the Hall current is given by the derivative of internal energy with
respect to the flux through the solenocid. In the notation of the previous sections
the change of the flux by é¢ is equivalent to the change of the vector potential
by 6¢/L.. To see this note that 6¢ = [ BdS = [roté AdS = 6 AL,. For localized
states a change of the vector potential from A to A + 6 A has no consequences,
but for extended states of the type considered previously, this changes the wave
function ¥, j(z,y) with a center of mass y = yx = kl* — e El* /hw. + (%) 8§Ae (cf.
Eq. (8)) into the one centered at yp = kI* —eEl? /hw, +8A, +8¢/BLy = yp41 for
8¢ = h/e (a flux quantum). The net effect of the procedure is a transfer across the
sample of one state (electron) per each occupied Landau level. The change of the
internal energy is a product of the number of transferred electrons, their charge
(—e) and the voltage difference V3. The Hall current thus is

dU AU e?

= =" — —n—
d6  hje . 'h

Vi (13)

The quantization i1s exact whenever the Fermi level lies in a mobility edge.
The above explanation works also for impure systems. To see this it is enough to
consider the system in which edge regions are free from impurities and the interior
is impure. By the above token one shows that a change in flux injects states into
the disordered region on one side of the system and takes them away on the other.
By charge conservation the end result is the transfer of electrons across the impure
region.
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In fact it is the disorder in the system which breaks translational symmetry
and leads to the quantization of Hall conductance. The change of the number of
electrons in a system or changes of the magnetic field changes the position of the
chemical potential but as long as it lies in the region of localized states the Hall
current is constant and the free electron value of the resistivity remains intact
pzy = h/ne?. This is consistent with experiment.

Moreover as long as the chemical potential lies in localized states the longi-
tudinal resistivity is zero at zero temperature, because electrons from the current
carrying states cannot be scattered across the gap, and there is no voltage drop in
the direction of current flow. The longitudinal resistivity pg, thus vanishes. This
explains the data.

The high precision of the quanntization in this approach is understood in
the following way. The change of the flux in a system with a gap in the spectrum
pumps a number of carriers across the sample. The Hall conductance resulting in
this process essentially measures the number of carriers transferred.

2.2. Between plateauz: localization—delocalization transition

The standard scaling theory of localization predicts that in two dimensions
all states are localized in thermodynamic limit no matter how weak the disorder
is [11]. These results are evidently in conflict with the quantum Hall effect, which
as we have seen requires the existence of extended states below the Fermi energy
for its explanation. The energy which separates extended and localized states is
called a mobility edge. In analogy with bulk systems the states in tails of Landau
bands are localized. If the Fermi energy lies in a mobility gap the system is in the
quantum Hall state with p,, = 0 and p,, quantized. If it is between lower E.,,
and upper E., mobility edges then p,, takes on a non-zero value and py, changes
from a given quantized value to the next one (c.f Fig. 4).

Already from the early experiments it has been that with decreasing temper-
ature the width of py, peak (AB) decreased and slope of pgy increased pointing
out that the region of extended states is very narrow if not of zero width. More
detailed experiments have shown that AB ~ T" with x = 0.42 4+ 0.04 signaling
that extended states do exist at the single energy value. The maximal slope of pgy
as measured by dpgy/dB has been found to increase with the same exponent «;
dpey /dB ~ T7" (Fig. 4). All this is consistent with the idea that lower and upper
mobility edges coincide and extended states exist at a single energy. At all other
energies the states are localized, i.e., their spatial extension ¢ is finite. The param-
eter & 1s called a localization length. It depends on energy and for energies close
to mobility edge is expected to diverge as € o< (F — E.)~”. The measured value of
v /2 2.3440.04 agrees quite well with theoretical estimations (see [12] for a review
of various theoretical approaches and [13] for a classical calculation of the network

model).
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Fig. 4. Sketch of the transition region between two consecutive Landau levels. The

slope of pyy scales with the same exponent as the widths of pss.

Each transition region between two consecutive IQHE steps in fact represents
a quantum phase transition from localized to delocalized states. Quantum phase
transitions take place at T'= 0 K. Experimentally they are studied at low but fi-
nite temperatures and manifest themselves as a narrowing down of regions, where
pee # 0 and growing of the slopes (dpyy/dB). The scaling theory of phase tran-
sitions qualitatively explains the localization—delocalization transition in strong
magnetic fields [14].

2.8. Breakdown of QHE

Soon after the discovery of QHE it became evident that the increase in the
current passing through the sample beyond a certain threshold value I, destroys
the quantization [7]. Recently, the breakdown of QHE has become the subject of
great interest and importance due to, already mentioned, application of quantum
Hall devices to maintain national resistance standards. The subject will be dis-
cussed in detail later at this conference, so only a general introduction is given
here.

In a typical QHE experiment one records the longitudinal voltage V,, as a
function of magnetic field and finds, at each plateau, a region of dissipation-less
flow (characterized by vanishing V) over the range of fields AB = 2B., where
B is called the critical field [15]. The breakdown of QHE manifests itself by
the (often sudden) appearance of longitudinal voltage and the resistance Ry, for
I > I.. The values of I, and B, depend on the filling factor (i.e. the plateau) and
temperature 7T'. Interestingly enough the observed temperature dependence of both
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I. and B. could be fitted by a slightly modified formula for the critical current
in the Gorter—Casimir two-fluid model of superconductivity [15]. Sweeping back
and forth the magnetic field in some samples reveals a hysteresis. The hysteresis,
however, seems to disappear at elevated temperatures and after illumination [16].
The breakdown of QHE often shows up as a series of non-monotonic voltage steps
recorded by changing B at constant 7" and for I > I.. These quantum steps have
been proposed to result from the “turbulent” flow of carriers and are most probably
due to their inter Landau level scattering [17].

3. The fractional quantum Hall effect

On phenomenological grounds FQHE looks like “ordinary” IQHE and is ra-
tionalized by Eq. (2) with v being a fractional number. Originally the fractional
steps with v = 1/3 and 2/3 were discovered in 1982 [18], during high field mea-
surements aimed at the observation of Wigner crystallization of electrons.

The quality and the number of fractional steps depend on the mobility of
carriers and temperature. In Fig. 2 a number of FQHE steps is visible [19]. The
plateux are seen to appear not only in the lowest Landau level but also in a higher
one. As it 18 easily seen most fractions have odd denominators. A more detailed
analysis of these and other data shows that some sequences are particularly clearly
developed. The sequences with v = p/(2p+ 1) terminate at v = 1/2. This is one of
very special fractions with even denominators. At this filling factor one observes
some features in py, and none in pg, .

Even though the FQHE appears to be the same as the IQHE, it shows
the quantization of the Hall resistivity p,, accompanied by vanishing longitudinal
resistivity pg, — its explanation is completely different. The first successful theory
was published in 1983 by Laughlin [20]. He has proposed that the ground state of
N electrons in a partially filled Landau level is described by the many-body wave

function
a 1
Uim(e, 2z o) = [[ (5 =)™ exp | =5 D15l | (14)
j<k J

where m = 3 and z; = z; +1y; is the position of j-th particle in (x,y) plane
expressed as a complex number.

Some silent features of the Laughlin wave functions are as follows. Due to
product terms the wave function keeps electrons apart and thus reduces their
Coulomb energy making their motion highly correlated. There exists a gap between
the ground state and excited states. The gap which now appears for partially filled
Landau levels is due to interactions. The effect of disorder is presumably similar
as in the IQHE. The disorder will localize the quasiparticles in the tails of bands
allowing for a finite width of the plateaus.
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Till now there have been discovered more than 30 fractional Hall plateaus,
and for most of them the appropriate wave functions can be deduced from Eq. (14).
This wave function describes a new state of matter — an incompressible quantum
liquid. The excitations over its ground state carry a fractional electric charge.
These are extended objects the properties of which are not related to the electron
properties but are determined by the interactions between electrons. In particular
the energy required to create the quasiparticle has been estimated to be a fraction
of the Coulomb interaction energy e?/l of two electrons being magnetic length
apart from each other. The experimental search of fractional charge excitations
started with the work of Clark and collaborators [21]. The most direct observations
of these objects have been recently reported [22]. Note, however, that the fraction
of the charge is different from the filling factor v as shown in recent experiments [23]
which measure the charge %e on the Hall plateaus with v = 2/5.

4. Summary

We have briefly discussed the issues connected with the Hall effects —
classic, quantum integer, and fractional — pointing out their universal aspects.
The classic Hall effect is manifestly a universal phenomenon. The Hall resistivity
Ry = B/qN, depends only on the charge of carriers and their density per area. It
does not depend on the disorder or the sample shape. Even if one punches holes in
a sample, the measured parameters ¢ and N are the same. This is not the case for
longitudinal resistivity which depends on the impurities, their density, and other
details.

This universal character of the Hall effect has shown its full glory in the
precision of the von Klitzing effect (i.e. the IQHE). Due to a complete freeze out
of the kinetic energy of electrons in the quantizing magnetic field the quantum
character of transport shows up as a quantization of the Hall resistivity. The
increase in temperature masks quantum effects and returns the classic behavior of
resistivity, i.e. its proportionality to the magnetic field.

Each of the steps in FQHE signals formation of a new quantum liquid. Some
of them are of particular interest as they do not show correlations of the type
described by the Laughlin wave function.

The fractional charges have been directly observed in shot noise experiments.
These objects possess also a fractional statistics which is related to topology of the
system [24]. The field theory of fractional charge and statistics is a lovely subject
intensively studied on various levels [25]. The topological aspect are very important
in the understanding of the effect and the topology of the systems seems to play
an interesting role as it has been shown in recent experiments in which a new
collective state, sharing some similarities to ferromagnetism, Bose condensation,
superfluidity and the Josephson effect and resulting from the phase coherence in
bilayer system, has been discovered [26].
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The readers interested in other aspects of these wonderful effects are advised

to consult original literature or one of the books on the subject [27].
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