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This contribution presents recent results on spin manipulation by opti-
cal pulses in various semiconductor nanostructures such as quantum wells,
microcavities, quantum dots. The potentialities of temporal coherent con-
trol, as well as spin dynamics under magnetic field are investigated, using
the current ultrafast emission spectroscopy techniques.
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1. Introduction

Coherent manipulations in semiconductor nanostructures have been the sub-
ject of an intense scientific activity for a few years, particularly in relation with
potential applications such as quantum information processing. In the latter, infor-
mation encoding is generally designed by achieving coherent linear superpositions
of quantum states in two- (or eventually more) level systems, which are gener-
ally denoted as quantum bits (“g-bits”). The first attempts in these directions
were made in atomic physics [1], where, however, the possibility of integrating a
sufficiently high number of “q-bits” seems questionable. This difficulty could be
overcome in solid state devices. On the other hand, the problem of decoherence is
much more critical in condensed matter.

In this paper, we will review different spin manipulations in semiconductor
nanostructures (quantum wells, quantum dots). Typically, two kinds of limiting
processes can be identified with respect to this aim: optical coherence relaxation,
conveniently characterized by the optical dephasing time 75 , and spin coherences
relaxation, characterized by longitudinal (transverse) spin relaxation times Ty (s).
In the case of quantum well excitons, for instance, the optically active doublet
(J =1, J — exciton angular momentum) can be viewed as an effective spin. Af-
ter recalling the basics of optical pumping in relation with exciton fine structure
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(Sec. 2), we will show that it is possible to create an arbitrary coherent superpo-
sition of these spin states by using a sequence of phase locked optical pulses with
orthogonal polarizations, using a temporal coherent control scheme (Sec. 3). Such
experiments can be extended to the case of microcavities in the strong coupling
regime, where spin dephasing times can be increased to some extent. Spin manip-
ulations by optical pulses is indeed limited here by the short exciton (or polariton)
optical dephasing times. With this respect, quantum dots, where quantum con-
finement should strongly reduce dephasing processes, are good candidates: at low
temperature, we show that the spin coherence decay time is much longer than the
electron—hole pair lifetime (Sec. 5). However, the problem of sample inhomogeneity
should be overcome, by addressing single boxes.

Finally, experiments designed to manipulate spins and their coherences under
magnetic field will be presented (Sec. 4). In particular we will stress on exciton spin
quantum beats in quantum wells in the case of correlated or uncorrelated electron
and hole spins, and conversion between optical spin orientation and alignment in
quantum boxes (Sec. 5).

2. Optical pumping experiments and exciton fine structure
in semiconductors nanostructures

The understanding of optical pumping experiments performed on excitons
in semiconductors lie on the knowledge of their fine structure. For excitons in
quantum wells (QWs), e.g. in the typical GaAs/AlGaAs structures grown in the
[001] direction, the combined action of the confinement, which quantizes the states
along the growth axis Oz and the spin—orbit interaction simplifies the formulation
of the quantum states with respect to the bulk situation. Practically, the symme-
try of the system is Dsg and we can consider that the lower exciton states are
obtained by the binding of an electron with a spin s, = +1/2 and heavy hole
with an angular momentum projection j, = £3/2. These excitons, the so-called
heavy-hole excitons and labeled X H, are located at about 10 meV below the
gap for narrow quantum wells of type I with a typical width of 3 nm. The XH
states are described in the basis of the exciton angular momentum J=73 —1—5
(5 and;are the conduction electron and hole angular momentum operators, respec-
tively), which is diagonal with respect to the spin—orbit interaction:
UT5) = 1dz + 82) = 7z, 82), j. = £3/2, s, = +1/2}. The intra-exciton electron—
hole exchange splits the degeneracy of the X H quadruplet. Practically, two con-
tributions are distinguished [2]:

(i) the short range one, which can be written with the effective Hamiltonian

i=r,y,2

where 5; and ;Z are the components of the electron spin and hole angular mo-
mentum operators, respectively, and a; and b; are the coefficients determined by
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the exciton radial and center of mass motion (in D4 symmetry a, = a, and
by = by) and K is the exciton center of mass wave vector. Hg splits the op-
tically active doublet {|J,) = |+1) = |£3/2,F1/2)} from the quasi-degenerated
pair {|J.) = |£2) = |+3/2,+1/2)} with a quantity x of about 0.1 meV [3];

(ii) the non-analytical or long-range one, which can be described for X H — 15
(J = 1) exciton states by the following effective Hamiltonian:

(Jo Ko + J, Ky )?
K?

Hy = h2(K) — 1| éx K, (2)
where 2 is a linear function of K at small K values [2, 4]. H), splits the opti-
cally active doublet, and can be identified to the longitudinal-transverse splitting
for the exciton modes with non zero linear momentum [5]. Tt does not couple
the X H (J = 2) states. As the exciton binding energy, the exchange interaction
is enhanced by the confinement in the QW structure, the exchange terms be-
ing proportional to the square of overlap integral between the electron and the
hole wave functions. As a fact, the exchange energy 6 is maximum for 15 states,
and decreases rapidly for excited bound states (the order is about 0.046 for 2.5
states) or unbound states [6]. The optical selection rules in dipolar approxima-
tion are such that the states |J,) = |41) are coupled to the optical mode o*
of the same angular momentum. The |J,) = |£2) states, which cannot be ex-
cited with one-photon transitions, are called “dark states”. In an optical pumping
experiment using a short resonant ¢T polarized optical pulse, the |+1) exciton
population will relax towards thermal equilibrium between the |[+1) and the |—1)
states, due to the longitudinal-transverse splitting and collisions experienced by
excitons as described below. The circular polarization degree can be evaluated in
the frame of the exciton density matrix formalism. Using the isomorphism defined
by {|+1),|-1)} — {|+1/2)X,|—1/2)X}, it is convenient to define the exciton

. Lo X . . . .
effective spin § = %0', o = (og, Oy, 0.) representing the Pauli matrices acting

on the X H optically active subspace. Introducing the exciton density operator p,
. . . ~n X . .
the mean exciton spin is then given by §%* = Tr (pS ) The circular or linear

polarization degrees of excitons are then simply given by

Peire = QSZX = M, Pin = 255 = w’
PLLT P-1,-1 pii+po11
P, =25X = FoLl Lol 3

i(pro+p-1,-1)
the two linear polarizations being taken along the (Oxz, Oy) and (Ox', Oy') refer-
ence axis (the latter is rotated by w/4 around Oz from the former). Finally, the
exciton polarization dynamics can be traced out by measuring the optical polariza-
tion characteristics of the time resolved secondary emission normal to the sample
surface. For instance



178 T. Amand, X. Marie, P. Renucci, E. Vanelle
It —1I- 7 -1
Pcirctzia Pintzia 4
(=T Pl = (4)

where It and I~ are the intensities of right and left circular components, and
I” and 1Y are the linear ones along Oz and Oy. For instance, Fig. la displays
Peirc(t) after the resonant excitation of X H by a ¢T pulse. The characteristic
relaxation time, the so-called longitudinal spin relaxation time, denoted Ty, is of
the order of a few tens of picosecond at low temperature [7]. Tt is not sensitive
to the exciton density, at low or moderate densities (< 101° cm™2). Tt decreases
when the confinement increases as predicted by the theory developed by Maialle
et al. [4]. In addition, the polarization decay time Ty is inversely proportional to
the exciton momentum scattering time, according to

1
T ()

leading to a motional narrowing effect as in the spin relaxation conduction electron

= (2(K)*)7",

mechanism described formerly by D’yakonov and Perel [5] (here, 7* represents the
exciton momentum elastic scattering time, a good estimation of which 1s given
by the optical dephasing time T3 [4], and the symbol () means the averaging on
the created exciton states). For instance, in the QW presented in Fig. 1, we have
measured (see below in Sec. 3) 75 = 6 ps at 10 K. Under resonant excitation,
we create an exciton wave packet whose typical extension in K-space is given
by K, = h™'\/2Mx 1y, where I'y, = 2h/T5 is the exciton homogeneous spectral
broadening, and Mx — the exciton mass. The average in Eq. (5) is approximated
by (2(K)) -
2(Kr) — afew tens of ueV, leading to good estimations of T [4].

o~
~

2(Kr), which corresponds typically to Kr & 3 x 10° em~! and
Figure 1b displays the Py, (¢) dynamics after the resonant excitation of X H

by a linear pulse 0. We see that the characteristic decay time Tj2, the so-called
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Fig. 1. GaAs/Al;Gaj_;As (z = 0.6) quantum well structure (well width L, = 10 nm);

(a) Circular polarization decay of an exciton gas resonantly excited by a short (1.4 ps)

ot

optical pulse, for different excitation powers.

excitation pulse; (b) linear polarization dynamics for linear excitons excited by a o”
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transverse spin relaxation time, depends now drastically on the exciton density,
it increases while the exciton density decreases, reaching values of the same order
as Ts1, but remains below the theoretical limit predicted in [4]: Tss = 27T51. As
we developed previously [8], this is due to inter-exciton exchange which destroys
the coherent superposition of the |4+1) and |—1) components in linear excitons
1X) = (|[+1) + |=1))/V2 (or |Y) = (|41) + |=1))/iv/2) generated by the o® (a¥)
excitation pulse. We shall see later in Sec. 5 how the three-dimentional confinement
achieved in quantum dots modifies completely this picture.

3. Spin manipulations by temporal coherent control experiments
in semiconductor nanostructures

3.1. Coherent control of exciton spin and alignment in quantum wells

We show now how the control of exciton alignment and orientation can be
achieved, i.e. how to fully control SX and SX by using polarized optical pulses. We
use here the temporal coherent control approach, in which the structure is excited
by a sequence of phase controlled polarized pulses. The behavior of the excitation
populations or spin coherences can be monitored through reflectivity [9], transmis-
sion [10], or secondary emission (SE) [11, 12]. The interest of the coherent control
approach lies in the fact that, choosing properly the intensities and polarizations of
each pulse of the sequence, populations as well as spin coherences of the system can
be manipulated within the photogenerated excitations dephasing time 75. Using a
cross linearly polarized sequence, we demonstrated that a quantum superposition
of the states excited by each pulse of the sequence is really achieved in the low
excitation field limit [13].

We show first temporal coherent control of the optical alignment of excitons
in GaAs/AlGaAs quantum wells (Lw = 10 nm) at low temperature (7' < 10 K),
and low exciton densities (typically about 10° cm~2). A sequence of two phase-
-locked 1.4 ps optical pulses, from a mode-locked Ti : sapphire laser, resonantly
excites the heavy-hole excitons at the energy Fxp. The two pulses of equal inten-
sities are circularly polarized, o+ and o, respectively, and are separated by a time
delay 7 = t1+1t5 (1 = mh/Expg — coarse delay, equal to an integer multiple m of
the laser central component period h/Ex g ; t2 — fine delay, allowing an accurate
phase tuning between the two pulses). The time-resolved kinetics are recorded by
up-converting the SE signal in a LilOg3 non-linear crystal with the output from an
optical parametric oscillator synchronously pumped by the same Ti:Sa laser [11].
The time resolution (1.4 ps), is limited by the laser pulses duration.

Figure 2a shows the time dependence of the total SE and the linear polar-
ization P'(t) for {5 = 0. The delay between the two excitation pulses is set to
t1 = 6.6 ps, so that there is no temporal overlap between the two pulses. The exci-
tation with the second laser pulse results in a sharp rise of the linear polarization
of the excitonic luminescence which then decays with the characteristic time T».
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Obviously, this linear polarization originates from the interaction of the second
pulse with the coherent excitonic polarization created in the sample by the first
pulse. The linear polarization (measured 4 ps after the second pulse) is displayed as
a function of ¢; in Fig. 2b. The observed oscillations are interpreted as due to the
coherent superposition of the |+1) and |—1) heavy-hole exciton states generated
respectively by the o and o~ pulses of the sequence, the phase factor between
the two components corresponding to the one between the two optical pulses. The
oscillation period corresponds to h/Exg = 2.6 fs. Figure 2¢ displays the minima
and maxima of the linear polarization oscillations as a function of ¢;. They decay
with a characteristic time Tqy = 6 & 1 ps at the temperature of 7' = 10 K and low
exciton density (~ 10° em~2). For a homogeneous QW, it is clear that Ty can be
identified to the heavy-hole exciton dephasing time 7%, as can be deduced from
the optical Bloch equations of the system [13].
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Fig. 2. The sequence configuration is (67, o7 ) and #1 = 6.6 ps. (a) The time evolution
of I* (m), I¥ (O) and the linear polarization Pin (full line) for t2 = mh/Exn (the
back-scattered laser light from the sample surface is negligible). (b) The linear polar-
ization P' measured 4 ps after the second excitation pulse [arrow in (a)] as a function
of the fine temporal separation > between the two excitation pulses. (c) The maxima
and minima of the linear polarization oscillations as a function of #; (the dotted line is

a guide for the eyes).
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Fig. 3. The sequence configuration is (6¥c?) and ¢; = 4 ps. (a) The time evolution of
It (0), I~ (o) and the circular polarization Peirc (full line) for ¢2 = mh/Exn. Dotted
line — expected Peirc decay in the case of secondary emission dominated by optical
interferences (see the text). Inset — the circular polarization Peirc measured 4 ps after
the second excitation pulse as a function of the fine temporal separation 2 between the
two excitation pulses. (b) The maxima and minima of the linear polarization oscillations

as a function of ¢1 (the dotted line is a guide for the eyes).

In order to achieve the coherent control of the exciton spin orientation, we
use now a sequence of linearly polarized pulses (6%, ¢¥). Figure 3a shows the
secondary emission intensity and circular polarization dynamics for pulses with
the same phase (t2 = 0). The chosen coarse time delay {1 /& 4 ps insures that there
is no temporal overlap between the two pulses. Again we observe a fast increase in
the emission circular polarization during the second pulse. The subsequent decay
occurs with a characteristic time corresponding to the longitudinal spin relaxation
time Ts1. Clearly, this circular polarization is the consequence of the interaction
of the second pulse with the coherent excitonic population created by the first
one. The time dependence of P on 2 measured 4 ps after the second pulse 1s
displayed in the inset of Fig. 3a. The observed oscillations have again the period
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h/Ex g, and are interpreted as the various achieved coherent superpositions of the
linear heavy exciton states |X) and |V}, with a relative phase factor identical to
the one between the two excitation pulses. Figure 3b shows that the oscillations
amplitude decay is also T4 = 6 & 1 ps in the same conditions as previously.

The time range in which these experiments can be performed is indeed lim-
ited by the exciton optical dephasing time 75. The observed decay time Ty can
be identified with 75 when the observation is performed in a non-specular direc-
tion [14]. In these conditions, T5 decreases when the temperature is increased. The
linear behavior of the associated X H homogeneous broadening I'y, = 2h/T5 is the
signature of the dephasing process due to acoustical phonon scattering, as seen
in Fig. 4, and formerly observed in four wave mixing (FWM) experiments [15].
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Fig. 4. Temperature dependence of I' = 2h /T4, and linear fit (solid line) to the exper-

imental data. The dashed line represents the inhomogeneous broadening [inp.

Note that the measured I} value lies below the inhomogeneous broadening one
I'inh when the lattice temperature is below 30 K. These results can be explained
on the ground of recent experimental and theoretical works on secondary emis-
sion [16, 17]. The latter is dominated, in our experimental conditions, by resonant
Rayleigh scattering (RRS) induced by the interface structural disorder due to the
molecular beam epitaxy growth process. The potential fluctuations experienced
by the exciton center of mass imply their localization. In the case of strong local-
ization, the individual excitonic dipoles emit coherent radiation in the observation
direction with a phase factor which strongly fluctuates from site to site, determined
by the local topology of the potential. The resulting interferences thus decay with
the time 75.

Figure 3 indicates that the excitonic emission remains circularly polarized
after the second pulse, during a time which i1s much larger than the optical de-
phasing time 75, i.e. when the emission is dominated by incoherent luminescence.
This demonstrates that a real coherent superposition of |X) and [Y) states has
been achieved for each individual dipole, and that the emission does not come
from optical interferences of coherent emission radiated by localized dipoles either
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|X) or [Y) according to the site; in the latter case, the circular polarization decay
time should coincides with T, and not Ts; (see the dotted line in Fig. 3a).

All these predictions can easily be deduced from the evolution equation of
the exciton density operator

d—ﬁ = —i H(t), pl d—ﬁ . 6

O C (6)
Here the system Hamiltonian is H = Hy + Hint(t), where Hy is the unperturbed
Hamiltonian and Hin:(t) — the interaction Hamiltonian with light. Both Hamil-
tonians are restricted to the heavy-hole exciton subspace. In the dipolar approx-
imation, Hin:(t) = —p - E(t), where g is the dipolar operator for the heavy-hole

exciton, and E(t) = Ey(t) + E2(t — 7) is the electric field amplitude (7 = #; 4+ ¢2).

o~

The phenomenological terms %ﬂrelax describe the relaxation of the system
towards the thermodynamical equilibrium. Within the relaxation time approxima-
tion, and for a homogeneous system, the relaxation of population terms writes in

the basis {|@), |+1),|-1)}

dps1 +1 1 1
, _ _ _ 7
dt relax T1 P1,%1 2T51(p:t17:t1 p:FL:Fl)’ ( a)
dpo,o 1
UL [ o b
dt relax 11(p171+p L 1)’ ( )

where |@) represents the QW fundamental state (no excitons), and 7} is the intrin-
sic radiative exciton lifetime. The coherences decay is given by the non-diagonal
relaxation terms

dp_1 1 1 1
) — _ = _ 8
dt relax <T1 + Tsz) p-1.1> ( a)
dpo 1 1
, __ . b
dt relax 2p®’ﬂ:1 (8 )

The optical dephasing time of optically active excitons is related to the lifetime
by 1/T2 = 1/(2T1) + 1/T, where T, represents the characteristic time of pure
(elastic) dephasing processes. Corresponding expressions can be obtained in the
{|@),1X),|Y)} basis. The equation of the density matrix can be solved analytically
in the case where 7, 75 < 71, Ts2. The quantum well interband polarization is given
by P = Tr(ppi). For a (6%, o¥) excitation sequence applied to a homogeneous
system, we obtain, to the first order approximation with respect to the electric
field amplitudes and with equal intensities short pulses [13]

Pare(l) = QGX;EP‘(T_/TT;%“&HT) exp[—(t — 7)/To], (¢ > 7). )

More details are given in Ref. [14] in the case of inhomogeneous systems.

Although the feasibility of coherent control experiments is well established,
it is highly desirable, with respect to potential applications, to investigate systems
where the exciton spin relaxation and optical dephasing times are much longer.
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3.2. Coherent control of exciton-polaritons spin and alignment in microcavities

Semiconductor microcavities in a strong coupling regime offer a unique pos-
sibility to control both spin relaxation and dephasing time. The presented struc-
tures, elaborated by molecular beam epitaxy, consist in a high finesse planar opti-
cal cavities delimited by two Bragg mirrors made of alternating Al,Ga;_,As/AlAs
quarter wave plates; one or several In;Gaj_;As quantum wells are inserted during
the growth at the antinodes of the electromagnetic field of the cavity. As demon-
strated by Weisbuch et al. [18], when the cavity finesse is high enough, exciton and
cavity modes with the same wave vector k and angular momentum J, [19] couple
together, thus leading to a mixed quasi-particle, the so-called cavity-polaritons.
The new eigenmodes consist in two branches, which dispersion is determined by

Erpws)(K) = % [Ee(K) + Exn(K)]

= VIFe(K) ~ Exu(R)F + (hn ), (10)

where E¢(K) is the photon cavity mode and {2y is the vacuum Rabi splitting,
characterizing the exciton-photon coupling strength. The index U B and LB denote
the upper and lower polariton branch, respectively). The eigenstates are given by
7., KYF = +X(K)| )., ) + C(K)
7., K) C(K)| ., KYY + X(K)|J., K)°. (11)
Here, X(K) and C(K) are the Hopfield coefficients [20]:

7., K)°,

UB _

] B )2 -3
X(K)= |1+ - - ;
( ) (ELB(A)—Ec(A)
o N\ 2]
C(K) = — |1 4 (Frell) = Ee(K) (12)
hilg
and |J,, K)* represent one-particle states of angular momentum J, = 41 and

wave vector K for excitons, cavity-photons, polaritons [A = X, C, LB(U B), re-
spectively]. Figure 5a,b shows the polariton energy position, exciton and polariton
weights as a function of the cavity detuning § = [E¢(0) — Ex(0)] with respect
to the exciton mode in K = 0. Figure bc shows the dispersion curves for 6 = 0*.

3.8. Polariton spin relazation in microcavities

The polariton angular momentum corresponds to the eigenstates of the op-
erator J; = JX @ JC, where JX and JE represent the projection on the growth

*In the GalnAs/GaAs QW microcavities presented here, the biaxial strain due to lattice
mismatch in the QW repels the light-hole excitons by a few tens of meV to higher energies, so
that they can be ignored in the spectral domain corresponding to heavy-hole excitons-polaritons.
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Fig. 5. (a) Energies of the polariton modes, measured in a cw photoluminescence ex-
periment (PLE) as a function of the cavity detuning § (the same excitation geometry
as the time-resolved experiments is used). The full lines correspond to the calculated
energies of the exciton-photon mixed states (see the text). The dashed lines are the un-
coupled cavity mode and exciton energies. (b) Calculated exciton (|X|?, solid line) and
cavity photon mode (|C|?, dashed line) weight of the lower branch polariton state as a
function of é. (c¢) Calculated polariton dispersion curves at § = 0 (bold line — polariton

branches, dashed lines — uncoupled modes, solid line — QW gap).

axis of the exciton and photon angular momentum (only optically active JX =1
are indeed coupled to light). The polariton states in each branch are twice de-
generated, the corresponding two states having a £1 angular momentum (in units
of h). We can thus define a polariton effective spin, and, in analogy with the defini-
tions adopted in bare quantum wells; it is possible to define polariton longitudinal
(transverse) spin relaxation times as the decay of the secondary emission circular
(linear) polarization degree.

In the following, the polariton lower branch is excited resonantly at a small
incidence angle (~ 8°, which corresponds to an initial in plane wave vector of
K, ~ 10* cem~1), and the detection is performed normal to the microcavity surface.
The cavities are grown with a wedge, so that it is possible to adjust the detuning
by moving the excitation spot on the sample surface. The excitation power is
weak, in order to avoid stimulated parametric processes [21, 22]. Figure 6 displays
the circular polarization decay of the microcavity SE under a single 0T excitation
for two cavity detunings (6 = 0 and 6 = —3 meV). We find 71 = 50 ps for
6 = 0 and Ts1 = 1 ns for 6 = —3 meV (in the latter case, the dynamics cannot
be measured beyond 50 ps because of the short polariton lifetime). Tt is clear
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here that the efficiency of the spin relaxation process, which is governed by the
long range electron—hole exchange interaction within the exciton component of the
polariton, decreases when the exciton character of the polariton decreases. Taking
into account that £ < g, we have 2P (K) = | X(K)|?Q2(K). Finally, in analogy
with (5), we obtain for the polariton spin relaxation time

1 < 2
5 = (2" (K)") 7ip. 13
7 = (@) ) i (13)
Here, 7f 5 is the polariton momentum relaxation time due to elastic scattering
processes. In our experiments, the initial polariton wave vector is about K, ~

10* em~1, corresponding to a squared long range exchange interaction [.QLB(KP)] :
about three orders of magnitude lower than in the previous case of bare excitons.
On the other hand, due to the strong energy dispersion in the excited region
at negative detuning, the elastic scattering time becomes longer by an order of
magnitude with respect to the bare exciton one, as seen below (74 & 20 ps for
8§ = —3 meV), so that the dephasing time is mainly determined by the polariton
escape time from the cavity. We have measured 71 & 2.5 ps, so that 1/7» =
1/(2Th) + 1/T4 = 1/(2T1). Taking T} as an estimate of 7* as is usually done, we
obtain thus for § = —3 meV 7 & 20 ps and I't, & h/T1 ~ 0.3 meV. However, due
to the small polariton mass (about 10~% times the exciton mass) the extension in
K-space of the created polariton wave packet is small with respect to Ky (Kpr <

Kp), so we can use the following approximation: <(.QLB(K))2> R~ (.QLB(KP))Z.
The polariton spin relaxation time 75 is thus more than two orders of magnitude
larger than the bare exciton one Ty . This results in the blocking of the longitudinal
polariton spin relaxation at negative detuning as it is observed in Fig. 6. Finally,

the same blocking effect can be obtained at negative detuning for linearly polarized
polaritons, when polariton mutual exchange interaction is quenched [23].

3.4. Coherent control of polariton alignment and angular momentum

We extend now the method applied in Sec. 3.1 to quantum well microcav-
ities, and show how the spin orientation, alignment (and density) of polaritons
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can be coherently manipulated. In addition, polariton dephasing times can be es-
timated [24, 25]. Let us consider for instance a sequence of two optical pulses of
opposite helicity (ot, o7) and excite resonantly the LB polariton for a cavity
detuning 6 = 0. Figure 7a displays the time dependence of the total SE when the
coarse time delay between the two excitation pulses (ct, ¢7) is t; = 6 ps, so that
there 1s no temporal overlap between the two pulses. Nevertheless, the excitation
with the second pulse results in a linearly polarized SE. As shown in the inset of
Fig. Ta, this linear polarization oscillates at the pulsation w = Erg/h as a function
of the fine temporal delay ¢5 (this recording, as all the similar data in this section,
is systematically taken just after (~ 1 ps) the second pulse). These oscillations
reflect the rotation of the orientation of the linear exciton-polaritons in the cavity
plane, when t5 is varied. The oscillations amplitude decay time Ty is measured in
Fig. 7b, where we find T4y = 3.2 £ 1 ps.
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Fig. 7. The cavity detuning is § = 0. (a) Time evolution of the total SE (m) after a
(¢%, 67) excitation sequence: t3 = 6 ps and 2 = 0. Inset — linear polarization as a
function of the fine temporal separation t2 between the two excitation pulses. (b) The
maxima and minima of the linear polarization oscillations as a function of ¢1. The solid
line is the fit using Eq. (14) (see the text).

Coherent control of microcavity polariton spin can be achieved with a se-
quence of two linearly cross-polarized laser pulses (¢, o¥). The excitation with
the second pulse results in a circularly polarized SE, as illustrated in Fig. 8 for
t1 = 4 ps. The amplitude decay of this circular polarization oscillations as a func-
tion of #; yields also the measurement of T5.

In microcavities, the polarization oscillations observed in Figs. 7a and 8
demonstrate that the coherent emission from the K =2 0 exciton-polariton states
can be obtained from an off-normal excitation direction. This fact was previously
observed by Norris et al. [26] in interferometric pump-probe experiments per-
formed in non specular directions. We interpret this as the result of the coupling
by the disorder induced potential of K, and K = 0 polariton states through their
excitonic component [27], which leads to inhomogeneous broadening of polariton
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Fig. 8. The cavity detuning is § = 0 and the configuration is (¢”, ¢¥). Circular po-
larization as a function of the fine temporal separation 2 between the two excitation
pulses (1 =4 ps).

states and the possibility of resonant Rayleigh scattering. We can thus conclude
that, due to the RRS nature of the detected signal, the polarization oscillations
decay time 7Ty observed in our experiments is the polariton dephasing time 75.
For microcavities with a very low disorder, the energy conservation and dispersion
effects should in principle lead to RRS emission directions located on the surface
of a cone centered around the normal direction to the microcavity, the top angle of
which is determined by the excitation light angle with respect to that normal [28].
However, the energy dispersion between K 22 10* em™! and K =2 0 is, in all cases
investigated here, smaller than the polariton states broadening’, so that elastic
light scattering becomes possible out of the above defined conical surface.

We study now the dependence of the optical dephasing time on the cavity
detuning. Using e.g. a (6F, o7 ) pulse sequence, it can be shown that just after
the second pulse (t = 7+ 0), the SE linear polarization writes (see Annex 1)

Pin(7) = Bin(7 =0) 12_6:(5)5;(7;//%)) cos (ELBBT) . (14)

This expression is valid when the polariton states can be considered as homoge-
neous. However its validity can be extended here in the case of inhomogeneously
broadened polariton states [5]. The decay of the oscillations amplitude, which
yields the measurement of 7%, is displayed in Figs. 7b and 9 for three cavity de-
tunings. Using the 77 values measured from the intensity decay in single pulse ex-
periments 71 = 2.5+1 ps, 3.5+ 1 ps, and 641 ps, we find, using (14), 7o = 4+ 1 ps,
3.2+ 1ps,and 2.5£ 1 ps, for 6 = —3, 0 and 3 meV, respectively. The trend is in
agreement with the result of the FWM experiment performed by Wang et al. [29],
who observed that the FWM signal decay was faster at the resonance (§ = 0) than
for negative detuning. This trend can be interpreted from the simple expression

fWhen —3 < § < 43 meV, we calculate that F(Kp) — E(0) < 0.7 meV while the polariton
linewidth [ verifies /' > 1.2 meV for 0 < K, Kp < 10* cm™1.
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Fig. 9. The cavity detuning dependence of 7>. The minima and maxima of the linear
polarization oscillations as a function of ¢; for § = —3 (O) and +3 meV (o), respectively.
The solid lines are the fit using the model (14) described in the text.

[15]: 1/Ty = 1/(2T1) + 1/T5, where T4 represents the characteristic time of pure
dephasing processes. For the negative detuning 6 = —3 meV, T3 is very close to
271 which indicates that, when the photon character of the polariton state dom-
inates, the optical dephasing time i1s determined by the cavity photon lifetime.
The contribution of pure dephasing processes is then small. In contrast, for the
positive detuning § = +3 meV, the lifetime is no longer responsible for the phase
coherence loss since 71 ~ 6 ps and T3 ~ 2.5 ps. Clearly, when the polariton has
a dominant exciton character, the optical dephasing is due to the pure dephasing
processes represented by T4. In this case, the measured T5 value is close to the
values reported for heavy-hole excitons in bare QWs of equivalent quality [30].
Our measured dependence of T» on é [24, 25] is in qualitative agreement with the
calculations of the homogeneous broadening I’ pwg) of the polariton modes by
Savona et al. [31], which show that the contribution of acoustical phonons to I'rp
is one order of magnitude smaller (at 6 = 0) than the value (of 2 to 12 peV/K)
for bare QW excitons.

4. Exciton spin quantum beats under magnetic field
in semiconductor nanostructures

Another possibility for manipulating exciton spin is naturally offered by the
use of magnetic fields [32, 33]. In quantum wells, a transverse magnetic field for
instance essentially couples the |+1) to the [4+2) (and symmetrically the |—1)
to the |—2)) exciton states through its conduction electron component, while a
longitudinal field provides the usual Zeeman splitting between J., = £1 (and
J, = £2) states (the angular momenta unit is #). Although it would be neces-
sary to use transient pulses of magnetic field in order to achieve a given coherent
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superposition of quantum states, thus achieving some quantum function, we shall
here only consider static fields, in order to investigate the potentialities of such an
approach.

Under a longitudinal magnetic field B, and using a resonant o® optical pulse
at small incidence angle (Faraday configuration), the linearly polarized components
are recorded. Figure 10 displays the linear polarization oscillations of the secondary

Linear polarization

Fig. 10. GaAS/AlpsGag.7As quantum well structure (Lw = 4.8 nm) in a longitudinal
magnetic field, linear polarization oscillations following a ¢® excitation pulse revealing

the exciton spin beats under a longitudinal magnetic field. The temperature is 1.7 K.

emission, observed at low temperature, and low density (~ 10° cm~2), revealing
the exciton spin beats [34, 35]. The effective exciton Hamiltonian writes, in the
J = 1 subspace: Hp = (ge + gh7||)/1BBZS’ZX (ge| and g are the longitudinal
electron and hole Landé g-factors). The temporal evolution of the exciton spin sX
1s simply given by the following expression:

SX

dsX
—dt = QBez X SX — Tz, (15)

where hf2p = (ge,||+gn,|)uB B represents the Zeeman splitting of the J = 1 exciton
states. The initial condition is given by $%*(0) = (1/2)e, (Pin(0) = 25, = 1).
The exciton spin precesses around e, and damps with Ty2 [34, 35]. The linear
polarization oscillations disappear in a nonresonant excitation, or when the exciton

temperature or density is raised.

Under transverse magnetic field, on the other hand, the electron-hole ex-
change interaction éx deeply modifies the oscillatory behavior of the exciton lu-
minescence under resonant excitation. We use now a circularly polarized ot exci-
tation light pulse (Voigt configuration), and the emission components of opposite
helicities are detected. Under resonant excitation (Fig. 11b), the emission copolar-
ized with the laser (1) oscillates, while the counter polarized one (I~) smoothly
increases, practically without oscillations, due to exciton spin relaxation [35]. The
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Fig. 11. GaAs/Alg.3Gag.7As quantum well structure (Lw = 3 nm) in a transverse

* excitation

magnetic field B, = 2.8 T. Intensity and polarization dynamics after a o
pulse: (a) the excitation energy is above the quantum well gap; (b) the excitation is

resonant with X H. The temperature is 1.7 K.

polarization decreases with the characteristic time T5; ~ 30 ps. Assuming that
the heavy-hole states which participate to the electron—hole pair manifold which
constitute the X H exciton are pure |£3/2) angular momentum (which is achieved
when the heavy-light exciton splitting is larger than the X H binding energy), the
dominant terms in the electron-hole effective spin Hamitonian are as follows [36]:

2 .
Hp = hwr,5; — gészgza (16)

where hwr, = ge, L BBy 1s the electron Larmor pulsation, ge 1, is the electron
transverse g-factor (the hole transverse g-factor, generally one order of magnitude
lower than ge 1, is neglected here [37]). The magnetic field mixes |+1) and |4+2)
exciton states, the splitting between the new eigenstates |1} ) and |¢/_) being now:
h2p = \/(6x)? + (hwy,)? which under weak magnetic field approaches §x. As the
ot excitation pulse creates a coherent superposition of |4} and [¢/_) states, the
oscillation pulsation observed on It corresponds to £2g. The modulation amplitude
of the It oscillations is limited by the factor (wr,/§2)? determined by the exciton
state mixing, thus explaining why these oscillations can only be detected when
hwr, becomes comparable to §x .

Under non-resonant excitation, the emission still displays an oscillatory be-
havior [35, 36, 38], which contrasts with similar experiments performed under
longitudinal magnetic field, as reported above. The It and I~ oscillate now with
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opposite phases (see Fig. 11a), at the Larmor wr, pulsation of the electron. Al-
though the detection energy corresponds to X H, at a moderate exciton density
(~ 10° em™2), the exchange energy 6x does not manifest here any more. However,
the circular polarization decays with a time which nearly coincides with the lon-
gitudinal exciton spin relaxation time 7y;1. The interpretation in terms of Larmor
precession of the electron alone is not surprising at a high electron—hole pair density
(~ 10 cm™2), or at high temperatures (~ 200 K), when the excitons are not sta-
ble quasi-particles, and the recombination originates from unbound electron—hole
pairs; it becomes puzzling when excitons are present, and the detected lumines-
cence comes from the exciton luminescence [39].

We have shown that the hole spin stability completely determines these two
extreme behaviors [36]. For the electron, the short range exchange interaction with
the hole is equivalent to an effective magnetic field, denoted the “exchange field”
orientated along Oz. If the hole spin 1s stable, the electron spin Hamiltonian is
equivalent to Hpg = hwr,8; + x5, , Where 2. = —%6)( (j.), so that the electron
spin 8 = (&) precesses according to

ds
dt
For ot excitation, s(0) = (—1/2)ez, and 2exc = —bx. If; on the contrary, the
hole spin relaxes in a time 7, smaller than h/£2, the electron does not “feel”

= (wreg + 2excer) X s. (17)

any more the hole exchange field ((j.) = 0). As a consequence, the polarization
quantum beats occur in the excitonic luminescence at the Larmor pulsation wr,, in
a similar way to the case of free electrons in unbound electron—hole pairs observed
previously [38, 39]. In the general case, the electron spin is coupled to a variable
characterizing the electron—hole spin correlation @ = 2/3(32 8). The electron spin
evolution is then determined by the following equations [36]:

% —wrep X s—(§/h)e; x Q,

dQ _ Q

T Q—(6/h)e, XS—E, (18)
4. _ i

dt Th’

where the damping terms due to hole spin relaxation have been only retained.
These equations allow us to describe the intermediate cases. From direct measure-
ments of 7, [40], we have learnt that the condition to observe electron spin beats
(T < h/£2) is currently satisfied when one excites a quantum well non-resonantly
with X H, whatever is its width. The hole spin instability is here in relation with
the fact that the exciton temperature is higher than the lattice temperature. The
observation of exciton beats in narrow quantum wells under resonant excitation
proves that the hole spin is stabilized in a cold two-dimensional exciton gas. Note
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Fig. 12. Gao.oaIng.g6 As/GaAs quantum well structure (well width = 4 nm) in a trans-
verse magnetic field B, = 2 T. (a) Intensity and polarization dynamics after a resonant

* excitation pulse; the fitting parameters are: 7, = 60 ps, 7« = 130 ps, Ts1 = 80 ps,

o
Trad = 30 ps. (b) The beat period dependence on B for resonant (W) and non-resonant
(e) excitation, from which the parameters éx =25+ 5 peV and go,1 = —0.5 £0.01 are

extracted with the appropriate fit (see the text).

that from the two types of experiments an accurate value of the exchange energy
bx = \/(EQB)Z + (Awr,)? can be measured (for instance, §x = 130 &+ 15 peV

for the quantum well of Fig. 10). Figure 12 illustrates a situation encountered in

Gag.oalng osAs/GaAs quantum wells, where ge 1 is larger than the ones in GaAs
QW and éx is smaller, leading to a stronger mixing between the J =1 and J = 2
states. The fits are obtained adding the general damping terms to Eq. (18) as
specified in Annex 2. We observe that, at early time delays, the /T extinctions are
more pronounced, and, when time increases, the polarization oscillations become
symmetrical with respect to the zero polarization axis, due to the progressive hole
spin relaxation.

Finally, exciton quantum beats, which can be observed during a few tens
of picosecond following a polarized excitation pulses under magnetic field, are the
manifestation of the collective exciton spin coherence. The latter is enhanced by
confinement which increases the electron—hole exchange interaction and stabilizes
the hole spin. Thus, two-dimensional excitons can keep the memory of the photon
angular momentum which have generated them, on a much longer time than the
phase memory of the excitation laser pulse.

These experiments have been extended recently to positively charged exci-
tons, which behave like electron-spins under magnetic field [41], and microcavity
polaritons where the effective g-factor can be modified with the cavity detun-

ing [42].
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5. Exciton spin dynamics in semiconductor self-assembled
quantum dots

We turn now to new semiconductor structures which provide a three-dimen-
sional confinement, the so-called quantum dots (QD). They consist in an island of
small gap semiconductor, whose sizes are comparable or smaller than the three-
-dimensional exciton Bohr radius (~ 10 nm), embedded in a matrix of wider gap
material. In such QD, the discrete energy levels and the corresponding lack of
energy dispersion lead to a predicted increase in the spin relaxation time com-
pared to bulk or quantum well (QW) structures [43]. Here, we report on a direct
time-resolved evidence of a spin relaxation quenching in InAs/GaAs QD.

The presented structure was grown by molecular beam epitaxy on a (001)
GaAs substrate. It consists of b InAs QD planes embedded in a GaAs planar
A-microcavity designed so that the cavity mode (FWHM = 3 meV) can be tuned
in the QD ground state energy range [44] (corresponding to the X H excitonic
transitions). The narrowing of the radiation pattern emitted by the microcavity
allows us to collect the photoluminescence (PL) efficiently in spite of the small
acceptance solid angle (1073 steradians) of the up-conversion detection set-up we
have used [11].

The sample is excited by 1.5 ps linearly (¢%) or circularly (ot) polarized
pulses generated by an optical parametric oscillator. The laser excitation en-
ergy coincides with both the cavity mode and the QD ground state energy. The
time-resolved PL is then detected at the excitation energy by a two-color up-con-
vertion set-up [11, 45].

The linear and the circular polarization degrees of the PL are defined as
previously. Note that the linear polarization is taken along the axis parallel to the
[1,1,0] and [1,—1,0] sample directions. The experiments have been performed at
low excitation power (~ 7 W ¢m™2) which corresponds to an average estimated
density of photoexcited carriers less than one electron—hole pair per QD.

In the envelope function approximation, and keeping the growth direction
Oz as the quantization axis, the angular momentum of electron and holes states
are still described by Bloch states as in the previous Sec. 2. In self-organized QD
structures however, the symmetry is lowered with respect to the one of quan-
tum wells, since the QD are usually shaped in the form of truncated-pyramids or
lenses [46]. The QD are then no more invariant by the roto-inversion symmetry
operation and the exchange interaction is no more isotropic [3].

Assuming QD with square bases (C3, symmetry), the anisotropic exchange
interaction splits now the |£1) radiative doublets into the two eigenstates labeled
IX) = (JU) 4+ |=1))/v2 and |[Y) = (]1) — |=1})/iv/2, linearly polarized along the
[1,1,0] and [1,-1,0] directions, respectively for QD with bases oriented along the
[100] and [010] crystal directions as ours [47]. Continuous wave (cw) single dot
spectroscopy experiments have clearly evidenced these two linearly polarized lines
in self-organized InGaAs QD with an exchange splitting of hw 2 150 peV [48].
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Fig. 13. (a) Time dependence of the PL components co-polarized I* and cross-polarized
1% to the linearly polarized (o®) excitation laser (T' = 10 K) and the corresponding linear
polarization A, (full ¢) (the initial peak on the I luminescence component intensity
corresponds to backscattered laser light from the sample surface). (b) Temperature de-

pendence of the linear polarization dynamics. Inset — Pin decay time as a function of

1/(kpT).

Figure 13a displays the time dependence of the PL components co-polarized
(I”) and cross-polarized (1Y) to the ¢” polarized excitation laser and the corre-
sponding linear polarization. The QD emission exhibits a strong linear polarization
(Piin = 0.75) which remains strictly constant within our experimental accuracy
during the exciton emission (i.e. over ~ 2.5 ns). This behavior differs strongly
from the exciton linear polarization dynamics in bulk or type I QW structures,
characterized by a linear polarization decay time of a few tens of picoseconds as
seen in Sec. 2. In the latter structures, it has been demonstrated that any scatter-
ing mechanism (phonon, exchange interaction, electron and/or hole single particle
spin relaxation) results in the destruction of the coherent superposition between
the |1) and |—1) components of the linear exciton. The experimental observation
of a QD exciton linear polarization which does not decay with time is the proof
that neither the electron, nor the hole, nor the exciton spin relax on the exciton
lifetime scale.
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Figure 13b presents the dependence of the exciton PL linear polarization
dynamics upon the lattice temperature. A clear temporal decay of P, is observed
above 30 K, the linear polarization decay time drops from ~ 3500 ps at 40 K down
to 50 ps at 80 K with an activation energy £, = 30+ 1 meV. This strong tempera-
ture dependence can be due either to any electron, hole, exciton spin-flip scattering
or any spin-conserving scattering processes which break the coherent superposition
of the linearly photogenerated excitons |X). To the best of our knowledge there
is no available theory on the exciton spin-flip and its temperature dependence in
QD. However one can speculate that the depolarization mechanism i1s due to hole
scattering to higher QD excited states since the measured activation energy is close
both to the energy splitting between the ground and first excited heavy-hole state
and to the InAs LO phonon energy [49].

A circularly polarized excitation should lead to the observation of circular
polarization quantum beats at the pulsation corresponding to the anisotropic ex-
change splitting. After about 15 ps, the time required for the QD PL signal to
overcome the backscattered laser light, we do not observe any beat in this excita-
tion configuration. This absence is interpreted as a consequence of the exchange
splitting energy statistical fluctuations among the QD whose energy coincides with
the cavity mode.

Under magnetic field (B) applied along the growth direction, if the Zeeman
splitting h{2p = (ge,)| + g, )¢ B- is much larger than the anisotropic exchange
energy hw, the QD exciton eigenstates are no more the |X) and |Y) linearly po-
larized states but the |+1) and |—1) circular ones. We thus expect to observe a
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Fig. 14. Time dependence of the PL components co-polarized It and counter-polarized
I~ to the ot-polarized excitation laser (T' = 1.7 K) and the corresponding circular

polarization Peirc (full ©). Inset: schematic representation of the exciton pseudo spin

S(¢) rotating around the vector §2 after o polarized excitation (see the text).
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circularly polarized PL under ot-polarized excitation, as already measured in sta-
tionary spectroscopy [46, 48]. This circular polarization is indeed observed (see
Fig. 2, where B = 2.5 T) and approaches 100% for B = 5 T. Again, the striking
feature is the absence of any polarization decay on the exciton emission scale which
confirms that the QD exciton spin is totally frozen.

We also observe, under magnetic field, a clear conversion from optical ori-
entation to alignment (i.e. detection of linearly polarized PL after excitation by
ot-polarized pulses) and vice versa [46], but once more the linear or circular po-
larization remains temporally constant.

The circular or linear exciton polarization dynamics can be described in the
framework of an exciton pseudospin with S = 1/2 [46], as introduced in Sec. 2.
Considering QD with square bases, the pseudospin Hamiltonian that takes into
account the exchange and the Zeeman terms is simply equal to [46]

HQDIh(WO'x—I—QBO'Z)/Q. (19)

The schematic representation shown in the inset of Fig. 14 shows that the pseudo-
-spin rotates around the vector £2(w, 0, 2p) after a circularly polarized excitation
characterized by an initial pseudo-spin S(0) parallel to the Oz axis. The projection
of S(t) on the Oz axis yields the circular PL polarization which should oscillate
as a function of time. We do not observe in Fig. 14 any beating structure in the
PL circular polarization. As already discussed above, this absence comes from
the exchange energy dispersion among the detected QD. We emphasize that this
dispersion, which leads to the destruction of the PL beats, does not prevent the
observation of circular polarization since the mean QD pseudospin projection on
Oz is non-zero and tends to 1/2 when B increases.

Under linearly-polarized excitation, the initial pseudospin S(0) is parallel to
the O« axis. Increasing the magnetic field yields a reduction of the average value
of the PL exciton linear polarization Pin(t) = 2S;(¢). The observed magnetic
field dependence of the PL circular and linear polarization displayed in Figs. 15a
and 15b, respectively, confirms this interpretation.

Moreover we see in the inset of Fig. 14 that under a linearly (circularly)-
-polarized excitation, one expects to observe a non-zero circular Py (linear Piy)
photoluminescence polarization. This conversion from optical orientation to align-
ment and vice versa, reported in Figs. 15c and 15d, was previously observed for
excitons in type IT QWs and in InAlAs/AlGaAs QD; it is a direct consequence of
the anisotropic exciton exchange interaction [46, 50].

The magnetic field dependence of the linear and circular polarization dynam-
ics allows the determination of the exciton fine structure [51]. Following Dzhioev
et al.,; a quantitative description of these dependences can be given by [46, 50]
2% &2

Pcircgpo' (a), Plingpl?nr,i»«
w2+ 23

CIIr'c ~ =
w4+ 0%

(b),
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- wp
Pcirc = P]?n m
which correspond, respectively, to the experiments presented in Figs. 15a—d. Here,
(A)? represents the statistical average of A2 over the QD distribution (4 = w, 2p).
P2 and PP are fitting parameters which denote, respectively, the circular or lin-
ear initial (¢ = 0) polarization. The four curves (solid lines) displayed in Fig. 15 are
the best fits to the experimental data obtained using Eqs. (20a—d) with the follow-
ing parameters: P3.. = 0.95, P, = 0.75, and |§x|/@ = 14.5 ps (9x = e ||+ 9n,||)-
Bayer et al. have measured the exciton g-factor value (|gx| ~ 3) in InGaAs QD by
single dot magneto-photoluminescence spectroscopy [48]. If we assume that this
|gx| value is also relevant for our quantum dot, this leads to hw = 135 peV. We
attribute the discrepancy between the fit parameter P = 0.75 and the measured
initial polarization Pla*¢" = 0.95 to our very simple approach which ignores any
orientation fluctuations from the [1,1,0] and the [1,-1,0] orientated eigenstates.
These slight fluctuations may originate from statistical fluctuations of the QD

212
(C)’ Py = Pcoirc,,('diB~
W2+ 23

(d), (20)

shape and orientation [46].
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Fig. 15. Magnetic field dependence of the circular (linear) polarization under circularly
polarized o7 [(a),(d)] and linearly polarized o® excitation [(b),(c)] (T = 1.7 K). The
displayed polarization values are the one measured at any time delay after the pulsed
excitation, since we do not observe any polarization decay. The solid lines are the best

fits obtained with Eqs. (1la-d), |§x|/@ = 14.5 ps (see the text).
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In conclusion, we have studied the linear and circular PL polarization dy-
namics in self-organized QD under strictly resonant excitation. We never observe
at low temperature any measurable temporal decay of the linear or circular lu-
minescence polarization regardless of the excitation polarization and the mag-
netic field value. This evidences a complete spin relaxation quenching in these
zero-dimensional structures. These results contrast with the clear spin relaxation
previously observed in non-resonant excitation conditions [52]. The main differ-
ence between these two kinds of experiments relies on the higher energy carrier
state occupation, including barrier, wetting layer, and QD excited states which
may induce the spin flip of the QD ground state by Coulomb exchange. Spin dy-
namics under magnetic field is somehow obscured by the inherent size dispersion
encountered in such systems. It is thus highly desirable to perform experiments on
single QD, in order to observe a Hamiltonian spin evolution, as recently observed
in CdSe microcrystals [53].

6. Conclusion

We have shown in this brief review how to manipulate spin with optical
pulses, and the basics of spin dynamics under magnetic field in various semiconduc-
tor structures. Other systems with high potential interest with respect to carrier
spin manipulations have not been described here, as [1,1,0] oriented GaAs/AlGaAs
quantum wells where the D’Yakonov and Perel mechanism is substantially sup-
pressed [54], doped semiconductor structures [55], semimagnetic structures (in-
cluding e.g. CdMnSe [56], or GaMnAs materials [57]), and hybrid ferromagnetic
metal /semiconductor devices, designed to achieve electrical spin injection and
transport [58]. On the other hand, the observation of a quenched spin relaxation in
self-assembled quantum dots structures brings clear experimental support to pro-
posals [59] using electron spins for quantum information encoding and processing
in a solid state system.

Annex 1

It can be inferred from Ref. [60] that the macroscopic polarization of the
microcavity following a single ¢ (or =) optical pulse can be expressed in the
frequency domain by

2 T'ExH

hw)~ N 2 - 7AH

<) ol 2n(Eup — Erp)

X 1 1 I'vg/2 ) E(hw — hwy)e (AL.1)
hw— Erp+ilrp/2 hw—Eup+1 00 o)et, .

where g1 is the quantum well dipolar matrix element between the ground state
and J, = *1 angular momentum of heavy-hole excitons, N is the number of
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quantum wells located at the antinodes of the microcavity (e.g. N = 4 here),
Expg is the bare heavy-hole exciton energy, T is the transmission coefficient of
the Bragg mirrors, Erpyp) are the two polariton states energies, I'ypup) are
the corresponding polariton homogeneous broadening. Finally, £(hw — hwg) is the
Fourier transform of the incoming electric field envelope function, wy — its central
frequency and ex = (ex £iey)/v/2. The temporal polarization function is given
by

P(t) = % / P(hw) exp(—iwt)dw. (A1.2)

When we apply an external picosecond optical pulse, resonant with the lower
polariton branch, with a spectral width broader than the polariton damping,
but much smaller than the Rabi splitting (which implies that the condition
TI'e, I'c < h{dy is fulfilled), the temporal response writes

P.(t) = P(0)exp <_I;L—hBt) exp (—iEgB t) 0(t) ey,

T FEex
2wh{?

where 6(t) is the Heaviside step function.

P(0) = —iN|D |2

£(0), (AL.3)

We can now proceed to the coherent control experiment. The total micro-
cavity polarization following a (¢, ¢ ™) excitation sequence writes

P(t) = Py(t)+ P_(1 — ), (A1.4)

where 7 = t; 4 t5 is the temporal separation between the two pulses. For t > 1,
assuming equal intensity pulses, P(t) writes in the ex, ey basis

P(t) = P(0) exp (—];L—hBt> exp (—iEgB t)

T Y

7 = (A1.5)

The total LB polariton population N () is given by

T

) o(t— 1) (AL6)

and the total emission intensity in the observation direction is proportional to N ().

N(t) = |P4(0)]? exp (-Ti) 6(1) + | P_(0)[> exp (-t;

1 1

The linear polarization of the SE, detected in a non specular direction, writes

Pl(t) — Iggh(t) + Ii)rfc(t)];(t[)lggh(t) + Ii}ric(t)] ’ (A1.7)

(Y)

where Iggh are the intensities of the two linearly polarized components of the RRS

in the detected direction, and Ii)IfC(Y) those of the incoherent polaritons emission.
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Just after the second pulse (! = 7+ 0), the incoherent contribution to the signal
is negligible, provided that t<7>(= 2h/I'tg) and the emission linear polarization
obtained as stated in Eq. (14).

Annex 2

The phenomenological relaxation terms in the general case take into account
the electron and hole single particle spin relaxations (characteristic times 7., ),
the exciton spin relaxation, and the radiative exciton recombination (time Tpaq).
They can be written as

d 1 1 1
dsy _ s (1, 1LY
dt 2 \7e 2751  Trad

ds: _ s L( g\ ( 1 1
dt_ Te 2 ? 3 Tsl Trad ’

e (o) ()
d&% = _% (Tie + 2T151 * Trlad) - %,

dﬁz = _2riad (Qz - %) ¢ <% ' Tl) |

dd_]j = _2r1ad (g - ) ’ -

where s1 = (sz,8y), Q@1 = (Qe,Qy), and N is the total exciton population.
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