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The breakdown of the dissipationless conductance in the integer and
fractional quantum Hall effect regime is reviewed. The temperature depen-
dence of the critical current and of the critical magnetic field at breakdown
bears a striking resemblance to the phase diagram of the phenomenolog-
ical two-fluid Gorter—Casimir model for superconductivity. In addition, a
remarkably simple scaling law exists between different filling factors.

PACS numbers: 71.10.Pm, 74.25.Dw

1. Introduction

At integer filling factors and under quantum Hall conditions the resistance
of a 2-dimensional electron gas (2DEG) is vanishingly small and intuitively the
electrical properties resemble those of a superconductor. The analogy with super-
conductivity 1s rather naive and not without problems; principally no Meissner
effect is observed and the resistivity is exponentially small rather than zero. Nev-
ertheless, some theoretical works exist linking the fractional quantum Hall effect
(FQHE) to superconductivity [1-4]. Theory linking the integer quantum Hall ef-
fect (IQHE) to superconductivity is more scarce. It has been suggested that the
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backscattering between edge states at breakdown is equivalent to the weak link
in a Josephson junction, so that in sufficiently narrow quantum Hall systems it
should be possible to observe Josephson type oscillations in the IQHE regime [5, 6].

In the quantum Hall regime the “dissipationless” conductance can be de-
stroyed by either applying a sufficiently large current or changing the magnetic
field so as to move away from integer filling factor. The breakdown of the IQHE
has attracted considerable experimental and theoretical interest [7-17]. While the
exact mechanism for the breakdown remains controversial, what is clear is that
the breakdown is driven by the largest electric field present in the system, namely
the electric field resulting from the Hall voltage Vig = Th/ve? for a current I at
integer filling factor v.

In this paper, rather than focusing on the microscopic model, we show that it
is possible to map out a phase diagram (critical current or critical magnetic field
versus temperature) for the breakdown of the QHE. We first review our earlier
work [18] for even integer filling factors where we show that the measured phase
diagram bears a striking resemblance to the phase diagram for the coercive field
in a superconductor. In addition, the phase diagrams for different filling factors
are all related by a remarkably simple scaling law. This work is then extended to
include odd and fractional filling factors.

The samples investigated here are modulation doped heterojunctions or sin-
gle quantum wells grown by molecular beam epitaxy. Hall bars were patterned to
have a width d = 250 pgm with 750 pym between voltage probes. For the measure-
ments the sample was mounted in variable temperature insert or directly in the
mixing chamber of a dilution refrigerator. The magnetic field was generated using
either a superconducting magnet (0-15 T) or one of the 20 MW resistive magnets
(0-28 T) at the Grenoble High Magnetic Field Laboratory.

2. Even filling factors

In order to investigate even filling factors an 8.2 nm quantum well sample
with a mobility of 11 m? V~! s~! and carrier density of 7.3 x 1011 cm~2
The high carrier density gives access to a large number of even filling factors.

was used.

A typical magnetoresistance trace measured at 2.0 K is shown in Fig. la. The
critical current I. was determined by measuring four terminal 7=V characteristics
for magnetic fields at 10 mT intervals in such a way as to sweep through the
particular filling factor [18]. A plot of I. versus magnetic field gives a slightly
asymmetric Gaussian (Fig. 1b) with the maximum corresponding to the magnetic
field for which v is integer. The critical current for a given filling factor is taken
to be the maximum of the Gaussian.

The temperature dependence of I. 1s shown in Fig. 2a. For a given filling
factor I, has an almost constant value at low temperatures before decreasing and
then vanishing at a critical temperature 7. The temperature dependence of I, is
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Fig. 1. (a) Magnetoresistance measured at 7' = 2.0 K for the 8.2 nm QW sample.

(b) Dependence of the critical current on magnetic field in the vicinity of v = 4.
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Fig. 2. (a) Critical current (I.) as a function of temperature for even filling factors for
the 8.2 nm QW sample. The solid lines are calculated using Eq. (1) as described in the

text. (b) Ic(40 mK) versus inverse filling factor (1/v). The solid line is a least squares
fit to the data.

remarkably similar to the phase diagram for the coercive field of a superconduc-
tor (for superconductors I. and H. are equivalent since the superconductivity is
also quenched when the current is sufficient to produce its own critical magnetic
field). The solid lines are generated using an expression similar to that for the
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phenomenological Gorter—Casimir [19] two-fluid model for superconductivity

= (239 [ ()

where .o = 314 pA and vy = 30 are obtained from the straight line fit to I.(7 = 0)
versus 1/v shown in Fig. 2b. The value of vy has the physical significance that this

, (1)

is the largest filling factor for which the conduction is expected to be dissipation-
less at zero temperature. From the magnetic field at which Shubnikov—de Haas
oscillations are first observed this corresponds to the condition w.7 & 2. The only
remaining parameter T = 31 K is found by fitting Eq. (1) to the temperature
dependence of I, for the filling factor v = 6. The temperature dependence of I,
can then be generated using Eq. (1) for the other filling factors with no adjustable
parameters. The agreement between the data and the model for all filling factors
is remarkable and an equally good agreement has been found in all samples. We
note that the critical current and the critical temperature scale as the cyclotron
energy (hwe « 1/v).

It is interesting to compare the observed scaling with the predictions of the
quasi-elastic inter Landau level scattering (QUILLS) model for the breakdown [14].
Experimentally, the critical Hall electric field at 7" = 0,

Fo=Vajdn DML L

v v d v?
In the QUILLS model breakdown occurs when quasi-elastic scattering to lowest
unoccupied Landau level can occur. The critical Hall electric field is estimated
using the classical turning points of the simple harmonic oscillator states to be

P hw.
S el [(v =12V + (v + 1/2)12]°

where hw. o< 1/v is the cyclotron energy and g = (h/eB)/? o« v'/? is the

magnetic length. The predicted scaling

1
Fe
SV (v — 122 + (v + 1/2)1/7]
agrees with the observed scaling ~ 1/1—2 to within 1% for the filling factors investi-
gated.

We now turn our attention to the temperature dependence of the width of the
dissipationless regions in the magnetoresistance traces. Pursuing the analogy with
the Gorter—Casimir model, we will try to map out a B, versus T phase diagram for
the different filling factors. Magnetoresistance traces were measured at different
temperatures and with a small current = 10-100 nA using low frequency (10.7 Hz)
phase sensitive detection. B. is defined as the half width of the dissipationless
region at each filling factor. Such a phase diagram for even integer filling factors
is shown in Fig. 3a. At first sight the data points bear little resemblance to the
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Gorter—Casimir phase diagram. However, as indicated by the solid and dashed
lines, it is possible to decompose this phase diagram into a low temperature (LT)
and high temperature (HT) phase. The HT phase can be fitted using

pHT  pHT T 2
= (B2 |- ()

where vq = 30 (as before) and BE' = 6.7 T and TII" = 54 K are determined by
fitting to the data for v = 8. The curves for all the other filling factors (dashed
lines in Fig. 3a) are then generated using Eq. (2) with no adjustable parameters.

, (2)

For v = 8, 10, 12 the agreement is good while for lower filling factors there is a
deviation with the data dipping below the predicted curve for a substantial part
of the phase diagram.

0.75

Bc[T]

0.50

0.25

T[K]

Fig. 3. (a) Critical magnetic field (B.) versus temperature for the 8.2 nm QW sample.
Even filling factors (v = 4, 6, 8, 10, 12) are shown and reveal the existence of two phases.
The dashed (HT phase), solid (LT phase), and dotted (melting) lines are calculated using
Eqgs. (2)—(4), respectively. (b) Bc(40 mK) versus 1/v2. The solid line is a least squares
fit to the data.

The LT phase in Fig. 3a can be fitted using

LT LT 2
Bo(T,v) = (BCS —BCS) 1- (iT)
v i Te

which is identical to Eq. (2) except that 7. = T4 no longer scales as the cyclotron

, (3)

energy i.e. in the LT phase the critical temperature is the same for all filling
factors. In contrast to the behaviour of I.(T = 0), for both the LT and HT phases,
B.(T = 0) scales as the cyclotron energy squared (1/v?) as shown in Fig. 3b. From
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the slope Bl = 13.4 T. The solid lines in Fig. 3a are generated by fitting to the
low temperature v = 4 data to determine TX" = 1.6 K with vq = 30 as before.

The critical magnetic field B, is determined simply by the number of localised
states in the relevant Landau level (LL). Tt is easy to show that the normalised
density of localised states in the LL ni/nrr = 2vB./Br (= 20% for v = 4 at
T = 0 with the fundamental field Br = 30.3 T). As B. o 1/v? this implies that
the density of localised states within a LL is proportional to the magnetic field
(¢ 1/v). The critical current which is determined with the Fermi level centred
in the localised states between LLs appears to be insensitive to the exact num-
ber of delocalised states since only one phase is observed. It is not clear why two
phases are observed for B. but this must be linked to increased localisation at
low temperatures. In the usual scaling theory picture of the IQHE this increased
localisation is interpreted as being due the quantum interference of coherent elec-
trons [20, 21]. The electrons are considered to be localised when the localisation
length &(F) ~ |E — E*|~*# is larger than the effective sample size which in general
is given by the phase coherence length Ly ~ T-?/2 Here E* is the energy at the
centre of the Landau level, p & 2.34 is universal and p = 1 in two dimensions.
Using scaling theory a reasonable fit (not shown) to the low temperature phase in
Fig. 3a can be obtained further supporting the hypothesis coherence is responsible
for the observed increased localisation at low temperatures.

We noted above that for lower filling factors in Fig. 3 the data dips below
the high temperature fitting curve for a substantial part of the phase diagram.
A similar deviation is observed in the phase diagram of high temperature (HT,)
superconductors and is associated with the melting curve of the Abrikosov vortex
lattice [22]. In the liquid phase, when a current is applied, the vortices are free
to move under the influence of the Lorentz force which leads to dissipation and
the superconductivity is quenched. In type II superconductors the critical field
can be enhanced by the addition of impurities which pin the vortices and prevent
flux jumping while in the QHE disorder increases the number of localised states
and hence enhances B.. For the IQHE the “melting” would correspond to a de-
localisation of cyclotron orbit centres. It is therefore natural to make an analogy
with type II superconductors and in particular HT. superconductors with weak
interlayer coupling which show a 2D behaviour. The melting behaviour suggested
by the deviation of the data points from Eq. (2) can be fitted to the functional
form of the Abrikosov lattice melting curve

A good fit for the lower v values can be obtained with B, = 1.6 T, vy = 30
and T, = 90 K. Here the 1/v scaling law has been determined empirically.
The predicted melting curves for v = 8, 10, 12 (not shown) lie above the usual
phase boundary and hence these filling factors are unaffected. For v = 6, the
data follows the melting curve to join the HT phase near 7. while for v = 4,
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the data dips below the melting curve close to the predicted 7. and appears to
have a critical temperature &~ 2 K lower than expected. This is similar to the
Berezinskii-Kosterlitz—Thouless (BKT) behaviour observed in 2D superconduc-
tors [23-25] due to intrinsic vortex—antivortex excitations which destroy the topo-
logical order and lead to a critical temperature Tggt which 1s typically & 1 K
smaller than 7. Although the comparison of the HT, and QHE phase diagrams is
clearly intriguing such an interpretation of our data would nevertheless be highly
speculative.

3. 0dd filling factors

A systematic investigation of odd filling factors in the 8.2 nm quantum well
sample is not possible due to the limited number of odd filling factors which
are dissipationless and in the available magnetic field range. For this reason a
heterojunction sample (carrier density 1.3x 101t em~2 and mobility 50 m? V=1 s~1)
was chosen to investigate odd filling factors. The number of filling factors which are
dissipationless (v = 1, 3, 5) is limited due to the critical collapse of spin splitting
[26, 27]. The scaling for odd filling factors is complicated by the many-body nature
of the spin gap which is in general dominated by the exchange energy [28, 29]. We
demonstrate that the data for odd filling factors can be fitted reasonably well with
the phenomenological model developed for the even filling factors provided this is
modified to take into account the many-body nature of the gap.
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Fig. 4. Typical magnetoresistance traces for the n = 1.3 x 10" em™ heterojunction

sample measured at temperatures 0.05-1.1 K.

Typical magnetoresistance traces measured for temperatures between 50 mK
and 1.1 K are shown in Fig. 4. The phase diagrams for the breakdown are deter-
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mined as for the even filling factors. The temperature dependence of the critical
current, I., is shown in Fig. ba for filling factors v = 1, 3, 5. For a given fill-
ing factor I. has a constant value at low temperatures before decreasing rapidly
and then vanishing at a critical temperature 7;.. In contrast to the case for even
filling factors it is not possible to fit this dependence with the phenomenologi-
cal Gorter—Casimir [19] two-fluid model for superconductivity. Instead a modified
form with a 7% power dependence is required to correctly fit the rapid decrease as
T 1s approached

(- ) - ()]

where I.o = 49.2 pA and vy = 5.1 are obtained from the straight line fit to
I.(T 22 0) versus 1/,/v shown in Fig. 5b. As for the even filling factors the value of
vy has the physical significance that filling factors larger than vy are not expected
to be dissipationless at zero temperature. The scaling (1/1/v) between different
filling factors in Eq. (5) has also been modified to take into account the many-body
nature of the spin gap. For even filling factors the critical current and critical
temperature scales as the cyclotron gap, i.e. 1/v. Assuming that the spin gap
is dominated by the exchange energy the spin gap should scale roughly as the
Coulomb energy e?/elg o< 1/+/v (here {g = \/h/eB is the magnetic length). The
remaining parameter Tog = 1.43 K is found by fitting Eq. (5) to the temperature
dependence of I, for the filling factor v = 1. The temperature dependence of I,
can then be generated using Eq. (5) for the other filling factors with no adjustable
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Fig. 5. (a) Critical current I as a function of temperature for the n = 1.3 x 10" cm™
heterojunction sample. The dissipationless odd filling factors v = 1, 3, 5 are shown. The
dotted lines are fits generated using Eq. (5) as described in the text. (b) Ic(1 = 0) versus
1/4/v, the solid line is a least squares fit to the data points.
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parameters (dotted lines in Fig. 5a). The agreement between the data and the
model for all filling factors is reasonably good. While it is possible to obtain a
reasonable fit to I.(T" = 0) assuming a 1/v dependence of the gap the critical
temperature can only be fitted by assuming a 1/1/ behaviour.

The reason for the T dependence is less evident. In the QUILLS model [14],
the breakdown of the IQHE breakdown occurs when the Hall voltage is sufficiently
large to align states of the full and empty Landau levels in the vicinity of the Fermi
energy over a spatial distance for which there is significant overlap of the wave
functions. Breakdown then occurs via quasi-elastic scattering processes between
the Landau levels. The Hall voltage is proportional to the current and thus the
critical current is expected to scale as the gap. This suggests that the rapid decrease
in I. (T* dependence) might be due to a collapse of the exchange enhanced spin
gap with increasing temperature. While this interpretation is speculative, we stress
that all samples studied show the same T behaviour for the critical current at
odd filling factors.

We now turn our attention to the temperature dependence of the width
of the dissipationless regions in the magnetoresistance traces. The measurements
(Fig. 4) were performed with a small current ~ 10-100 nA using low frequency
(10.7 Hz) phase sensitive detection. The temperature dependence of B. for odd
integer filling factors is shown in Fig. 6a. The phase diagram is very similar to
that for even filling factors. Notably, two phases are observed: a HT phase with a

Bc[T]
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Fig. 6. (a) Critical magnetic field Bc. as a function of temperature for the n =

1.3 x 10" cm™2 heterojunction sample. The dotted and dashed lines are fits gener-

ated using Eq. (6) and Eq. (7) as described in the text. (b) Bc(T" = 0) versus 1/, the

solid lines are a least squares fit to the data points plotted with o = 3/2 and o = 1.
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critical temperature which scales as 1/+/ and a L'T phase which by analogy with
even filling factors is expected to have a T, which is independent of filling factor.
In contrast to the critical current the temperature dependence is well fitted by a
conventional [(1 — (T'/T:.)?] Gorter—Casimir phenomenological model (dotted and
dashed lines in Fig. 6a).

B is a direct measure of the number of localised states (nioc = 2vB./®Pq)
between spin Landau levels which should be independent of the gap in the high
field limit in which spin Landau level mixing can be neglected. It 1s not possible to
unambiguously determine the correct scaling of B.(T s 0) as can be seen in Fig. 6b
in which 1/v and 1/v3/? dependence give equally good fits. B.(T ~ 0) o 1/v would
imply that nj,. was independent of filling factor (or gap). On the other hand,
B.(T = 0) o< 1/3/? would imply that njo. o< 1/\/v scales as the spin gap which
would imply a constant (energy independent) background of localised states. For
even filling factors njo. o< 1/ can be interpreted as scaling as the cyclotron energy
(i.e. a constant background of localised states) or as scaling with the number of
the Landau levels (i.e. the localised states at B = 0 collapse onto v Landau levels
in a magnetic field). The dotted and dashed lines in Fig. 6a are generated using

LT LT 2
Bty = (2 BLY (1)
v v§ T3

for the HT and LT phases, respectively, with o« = 3/2 although oo = 1 would give an

and

(7)

equally good fit but with slightly different parameters. Clearly, further measure-
ments on high density and high mobility samples in order to have access to a large
number of odd filling factors are required in order to determine unambiguously
the correct scaling law.

4. Fractional filling factors

For the investigation of fractional filling factors a high mobility heterojunc-
tion sample (carrier density 1.6 x 10! em™2 and mobility 500 m? V=1 s71) was
used. Magnetoresistance traces measured for temperatures between 50 mK and
1 K are shown in Fig. 7. While minima in the resistance are clearly observed for a
large number of fractional occupancies only filling factors 1/3, 2/3, and 2/5 show
dissipationless conduction. The gap for fractional filling factors is approximately
two orders of magnitude smaller than the cyclotron gap for even filling factors so
that the critical current for the fractional states was too small to allow a systematic
study.

We therefore concentrated on measuring the phase diagram for the critical
magnetic field which is shown in Fig. 8. Once again it is possible to decompose the
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Fig. 7. Typical magnetoresistance traces for the n = 1.6 x 10! cm™2 heterojunction

sample measured at temperatures 0.05-1.0 K.

phase diagram into a low and high temperature phase (as indicated by the dashed
and dotted lines) although the transition to the low temperature phase occurs
at &~ 150 mK approximately an order of magnitude smaller than the transition
temperature for integer filling factors. Due to the non-trivial dependence of the
fractional gaps on filling factor no simple scaling law between different fractional
filling factors is expected. From an experimental point of view the limited number
of dissipationless fractions does not allow to determine if a simple scaling law
exists.

For integer filling factors the low temperature phase can be interpreted us-
ing scaling theory in which the increased localisation at low temperatures is a
result of the quantum interference of electrons [20, 21]. Such an effect requires
phase coherence, which is responsible for a number of well-known effects such as
weak localisation, Aharonov—Bohm oscillations or universal conductance fluctua-
tions. In the currently accepted picture for the FQHE [30], the fractional states
can be understood as the IQHE of composite fermions (an electron with two ficti-
tious flux quanta attached). In a mean field approximation the composite fermions
move in a zero effective magnetic field at filling factor v = 1/2. However, fluctua-
tions in the electron density give rise to fluctuations in the effective magnetic field
which are sufficient to destroy time reversal symmetry and thus suppress weak
localisation. Aharonov—Bohm oscillations do not require time reversal symmetry
and as such should be more resistant to magnetic field fluctuations. Nevertheless,
Aharonov-Bohm oscillations are not observed for composite fermions [31]. The
observation of a low temperature phase for the fractional filling factors is therefore
surprising and if interpreted as being due to quantum interference this would be
to the best of our knowledge the first observation of a physical effect related to
coherence for composite fermions.
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Fig. 8. Critical magnetic field B. as a function of temperature for different fractions
for the n = 1.6 x 10*' cm™2 heterojunction sample. The dotted and dashed lines are

guides to the eye generated using a Gorter—Casimir type expression.

5. Discussion and conclusion

The analogy between the dissipationless conductance in the fractional quan-
tum Hall effect and superconductivity has been discussed in a number of theo-
retical papers [1-3]. Girvin and MacDonald [1] proposed an effective-field-theory
model analogous to the Landau-Ginzburg theory of superconductivity in which
the FQHE can be viewed as a superconducting state of composite bosons. Aronov
and Mirlin [4] demonstrated that the low temperature conductivity of such an
anion gas in the presence of impurity scattering remains finite but tends exponen-
tially towards zero with decreasing temperature. A gauge transformation to form
composite bosons and associated anion superconductivity would seem irrelevant
for the single electron description which works so well for the IQHE. The similarity
between the phase diagrams must have its origins in the similarity of the Hamil-
tonians: the vortex term in the Hamiltonian of a 2D superconductor is identical
to that of the Coulomb gas in two dimensions [22].

In conclusion, the phase diagram for the breakdown of the IQHE is well
described phenomenologically by the equations of the two-fluid model for super-
conductivity. The phase diagram for the critical current can be well fitted by the
Gorter—Casimir two-fluid model for type I superconductors. The phase diagram for
the critical magnetic field is more complicated and is strikingly similar to the phase
diagram for the coercive field in type II superconductors. The observed “melting”
behaviour for the critical magnetic field is intriguing and seems to be linked to
dissipation induced by passing current through the sample. Recent elastic tun-
nelling measurements on high temperature superconductors clearly demonstrate
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that when a “dissipationless” measuring technique is used the melting behaviour
is not observed [32, 33].

For even filling factors a remarkably simple scaling law between different
filling factors is observed. This scaling law is modified for odd filling factors due
to the many-body nature of the spin gap. All filling factors (even, odd, and frac-
tional) show a low temperature phase which is due to increased localisation. This
is interpreted within the framework of the scaling theory of the QHE as being due
to quantum interference of coherent electrons. If this interpretation is also correct
for the fractional filling factors this is possibly the first observation of coherence
for composite fermions. The similarity between the HT, and QHE phase diagrams
is a striking one. Clearly many questions remain to be answered.
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