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A review of recent theoretical studies on a single-electron tunneling in
quantum dots is presented. This effect underlies the transport spectroscopy
performed on the vertical gated quantum dots and the capacitance spec-
troscopy on the self-assembled quantum dots. The conditions of the single-
-electron tunneling are formulated in terms of electrochemical potentials of
the electrons in the leads and in the quantum dot. The electrochemical po-
tentials for the electrons confined in the quantum dots can be calculated
by solving the many-electron Schrodinger equation. The results obtained
by the Hartree—Fock method are presented. For the vertical gated quan-
tum dot, the realistic confinement potential is obtained from the Poisson
equation. The application of the self-consistent procedure to the solution of
the Poisson-Schrodinger problem is discussed. The calculated positions of
the current peaks at zero bias and boundaries of the Coulomb diamonds
for non-zero bias are in good agreement with experiment. The influence of
an external magnetic field on the single-electron tunneling is also discussed.
The spin-orbital configurations of the electrons confined in the quantum
dots change with the magnetic field, which leads to features observed in the
current—voltage and capacitance—voltage characteristics.

PACS numbers: 73.22.—f, 73.63.-b

1. Introduction

FExcess electrons confined in quantum dots (QDs) form atomic-like states
with discrete energy levels. The QD with the confined electrons can be treated
as an artificial atom [1]. The potential that bounds electrons in the QD (confine-
ment potential) is created by the band offsets at the interfaces of the QD and the
external electric fields applied. This allows for a modelling of the electron energy
spectrum of the artificial atoms. The energy levels of the artificial atoms can be
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detected in single-electron tunneling processes that form a basis of new spectro-
scopic tools: transport spectroscopy [2] and capacitance spectroscopy [3]. In the
transport spectroscopy, the single-electron tunneling currents via the nanodevice
are observed [4], while in the capacitance spectroscopy, the single-electron charging
of QDs is detected as the changes of the differential capacitance [3]. Recently, the
evidence has been found for the higher-order tunneling, the so-called cotunneling,
in vertical gated QDs [5]. The transport experiments are usually performed on
gated QDs [6, 7], i.e. three-terminal nanodevices with the gate electrode, which al-
lows us to control the tunneling current. The experiments of Tarucha et al. [6]
provide the beautiful evidence of the shell filling in the artificial atoms. The
capacitance-spectroscopy measurements were done on self-assembled QDs [3, 8]
in a magnetic field. These measurements [8] also yielded information about the
electronic spectrum of the QDs.

In the present paper, we discuss theoretical methods applied to a descrip-
tion of the transport spectroscopy on the vertical gated QDs [6, 7] and capacitance
spectroscopy on the self-assembled QDs [8]. In spite of the facts that the verti-
cal gated and self-assembled QDs are fabricated by different nanotechnologies and
the current and capacitance measurements are performed in different experimental
setups [6, 8], they have the following common features: (i) the single-electron tun-
neling is the basic physical process underlying the transport and capacitance spec-
troscopy, which allows us to determine the spectra of the artificial atoms formed
in both the types of QDs; (ii) the conditions for the observation of current and
capacitance peaks as functions of the gate voltage are determined by the energetic
balance between the electrochemical potentials of the electrons in the leads and the
electrons confined in the QDs; (iii) both the types of the QDs possess the cylindri-
cal rotational symmetry (this symmetry is almost perfect for the vertical gated QD
and is a fairly good approximation of the shape of the self-assembled QD); (iv) the
artificial-atom states formed in both the types of the QDs can be described by the
Hartree—Fock method with the sufficient accuracy. In the present paper, we will
exploit these common features to discuss the theory of the single-electron transport
through the gated QDs [6] and the single-electron charging of the self-assembled
QDs [8].

In the majority of theoretical papers [9-13], a two-dimensional model of
the vertical gated QD was used with a parabolic confinement potential assumed.
This model provides only a qualitative description of the experiments [6, 7]. The
theoretical methods [14-16], presented in this article, are fully three-dimensional
and apply more realistic confinement potentials. In particular, for the vertical
gated QD we will discuss the solutions of the Poisson—Schrodinger problem for
the entire nanodevice and show how they allow us to obtain the electron energy
spectrum of the QDs in good agreement with experiment. We will also discuss the
effect of an external magnetic field on the energy spectrum of QDs.
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The present paper is organized as follows: in Sec. 2 conditions of the sin-
gle-electron tunneling are formulated; in Sec. 3 the problem of accuracy of the
Hartree-Fock method is briefly discussed; in Sec. 4 the self-consistent procedure
of the solution to the Poisson-Schrodinger problem is presented for the vertical
gated QD; the computational results for the gated QDs are given in Sec. 5; in
Sec. 6 the influence of the external magnetic field is discussed for both the gated
and self-assembled QDs; in Sec. 7 we discuss the results of other theoretical meth-
ods; Sec. 8 contains conclusions, and Sec. 9 — a summary.

2. Conditions of single-electron tunneling

In order to observe either the single-electron currents via the QD or the
change of the QD capacitance, we have to attach the leads to the nanodevice.
The conditions of the single-electron tunneling are determined with the help of
electrochemical potentials of the electrons in the leads and in the QD. The elec-
trochemical potential of electrons in electrode a of the nanodevice is defined as
follows:

Ha :/Jg —eVa, (1)
where p¥ is the chemical potential of electrons in lead a and V, is the voltage
applied to a. For a metal electrode at zero temperature and zero voltage, the
chemical potential defines the Fermi energy, i.e. F;; = u9. The chemical potential
of the QD that bounds N excess electrons is defined as the energy needed to
increase the number of electrons by one, i.e.

NOQD = N?V+1 = Ent1— En, (2)
where Fy is the ground-state energy of N electrons confined in the QD.

In the gated QD, i.e. the nanodevice with the source (s), drain (d), and
gate (g) electrodes attached, the single-electron tunneling from the source to
drain through the QD is energetically allowed if the following inequalities are
fulfilled [17, 18]:

fs > By > fa, (3)
where pg and g are the electrochemical potentials of the source and drain, respec-
tively. In the gated QD, the source (V5) and drain (V) voltages directly determine
the corresponding electrochemical potentials (cf. Eq. (1)), while the gate volt-
age (Vi) affects the confinement potential, which changes the energy levels of the
N-electron artificial atom, i.e. the chemical potential. This means that the gate
voltage has an indirect, but essential influence on the single-electron tunneling.
In this process, the number of electrons bound in the QD changes as follows:
N — N +1— N .... Then, we speak about opening-up the transport window.
If Fs = Fy, then — according to condition (3) — the single-electron transport is
determined by the drain—source voltage Vg3 = V4 — V5. Due to the weak inequal-
ities in condition (3), the single-electron tunneling current can flow even at zero
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bias, i.e. at Vg = 0. For the reverse bias the electrons flow from the drain to the
source. In this case, the signs of inequalities in condition (3) have to be opposite.
If condition (3) is not fulfilled, the number of electrons bound in the QD remains
unchanged and we speak about the guantum Coulomb blockade [15]. The quan-
tum Coulomb blockade results from the discreteness of the artificial-atom energy
spectrum, which originates from the space quantization as well as the Coulomb
repulsion between the electrons.

The electrons confined in self-assembled QDs are usually studied by the
capacitance spectroscopy [8]. The capacitance spectroscopy is based on an appli-
cation of a superposition of a dc voltage and small-amplitude ac voltage between
the top and substrate contacts [8]. The condition for the single-electron tunneling
can be formulated in terms of the electrochemical potentials as follows:

Hb 2 HN41, (4)

where pp, and pyy1 are the electrochemical potentials of the substrate (back)
contact and (N + 1)-electrons confined in the QD. Inequality (4) provides the
condition for the single-electron tunneling from the substrate contact to the QD
that contains NV excess electrons. If the sign of inequality (4) is opposite, the single
electron can jump back from the QD to contact b. In the capacitance spectroscopy,
the electrons do not reach the opposite (top) contact. This process, called the
single-electron charging, leads to the oscillations of the charge confined in the QD,
i.e. the change of the differential capacitance of the QD. These small changes of
the capacitance can be detected by a high-resolution capacitance bridge [8].

3. Hartree—Fock method

The N-electron artificial atom is a quantum-mechanical system. Therefore,
the ground-state energy of this system should be calculated by the quantum-mecha-
nical methods. Usually, the authors apply either the density-functional method
in the local density approximation (LDA) [10, 13, 19] or the Hartree-Fock (HF)
method [12, 20]. For few-electron systems, the configuration interaction (CI) meth-
od can be used [9, 11, 21] (called “exact diagonalization”). In the LDA method,
the electron—electron correlation is included in the local approximation, while in
the HF method the correlation is neglected. The CI method allows for an incorpo-
ration of the correlation via the coupling between all allowed electron configura-
tions. In Ref. [22], the problem of correlation was studied for two-electron systems
in QDs with the harmonic-oscillator confinement potentials of both the spheri-
cal and cylindrical symmetry. It was shown [22] that — in small QDs — the HF
method provides reliable results for the N-electron ground state. Only in large
QDs, the HF results exhibit a few-percent relative error. For the QDs considered
in this paper the estimated inaccuracy of the HF method is about 1 meV, which
is less than the experimental uncertainty [6-8].
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The HF equations were solved [14-16, 23] with the use of one-electron wave
functions

1/)1/(7‘) = chgn(r) (5)

n

expanded in the cylindrically-symmetric Gaussian basis

gn(r) = 2Pyt exp[—an(2® +y*) = Ba27], (6)
where ¢,, «, and [, are the variational parameters, p, and ¢, are integers

(pn + ¢n < 4). Tt was checked [22, 23] that basis (6) yields accurate results for the
spherical [23] as well as cylindrical [14-16] QDs.

4. Poisson—Schrédinger problem for gated quantum dots

The transport-spectroscopy experiments were performed on the vertical gated
QDs [6]. The nanodevice [6] was made of the multi-layer GaAs/Alg 22Gag.7sAs/
Ing 05Gag g5As heterostructure, which was etched to form a cylindrical pillar
(Fig. 1a). The QD region within the InGaAs layer is defined by the two AlGaAs
barriers that create the vertical confinement, and the ring-shaped Schottky gate
that leads to the lateral confinement of the electrons. The nanodevice is termi-
nated by the drain (top) and source (substrate) electrodes. The real nanostruc-
ture is asymmetric with respect to the inversion of the cylinder axis (cf. Fig. 1a).
Nevertheless, the experimental data [6, 7] are nearly perfectly symmetric when re-
versing the polarity of the bias. Therefore, the (almost) symmetric model (Fig. 1b)
of this nanostructure was applied in the papers [14, 15, 24]. The slightly different
widths of the AlGaAs barriers are the only deviation from the inversion symme-
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Fig. 1. (a) Schematic of the vertical gated QD fabricated by Tarucha et al. [6].
(b) Model nanostructure used in calculations [14, 15, 24]. Dotted line displays the cross
section of the cylindrical surface, on which we put the boundary conditions for the

Poisson equation. R and Ry is the inner and outer radius of this surface, respectively.
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try with respect to the cylinder (z) axis. On each side (source and drain) of the
nanostructure (Fig. 1b), the n-GaAs layers are attached to the GaAs spacers. The
application of the model nanostructure with the layers expanding up to infinity
allowed us to put the boundary conditions for the Poisson equation [14, 15, 24].

In the gated QD, the excess electrons are confined by the confinement poten-
tial being the sum of the double-barrier vertical-confinement potential, which stems
from the conduction-band offsets, and the electrostatic potential ¢;(r), which is
responsible for the lateral confinement of the electrons in the QD. Potential ¢1(r)
is a solution of the Poisson equation

V¥p1(r) = —gp(r)/eoss, (7)
where gp(r) is the space charge density originating from the ionized donors in
the n-GaAs layers and g4 is the static dielectric constant of GaAs [24]. In order
to determine the total electrostatic field in the entire nanodevice [6] we have to
take into account the additional electrostatic potential ¢s(r), which results from
the presence of N excess electrons in the QD. Since these electrons form the
artificial-atom states, they exert outside the QD the electrostatic field with the
Hartree-type potential of the form

pa(r) = 471'6065 VZ:/dS /W’u ’ 8)

where the sum runs over all the occupled one-electron states with wave functions

¢y (7). Therefore, the total electrostatic potential in the nanodevice is the sum

Piot(r) = @1(r) + pa(r). (9)

In Eq. (7), the space charge density is associated with the ionized donors.
At low temperature, we can neglect the thermal ionization of the donors; then
the 1onization of the donors is only caused by the electrostatic field with potential
Pror (7). In the nanodevice [6], the source and drain Ohmic contacts are made of
the heavily doped n-GaAs layers. Therefore, in each part of the nanodevice, the
donor energy level is aligned with the electrochemical potential of the source (us)
and drain (pq). In the n-GaAs layer, the ionization of the donor center at position
7 occurs if the total potential energy of the electron

Utot(r) = —6@1;01;(7‘) (10)
exceeds the energy of the electron bound to the donor center, i.e. the correspond-
ing electrochemical potential. This leads to the following donor ionization condi-
tion [24]:

Utot(7) > Hs(a) (11)
for the source (s) and drain (d) side of the nanodevice. Condition (11) allows us
to determine the space charge density as follows: if condition (11) is fulfilled, then
op(r) = enp(r), and gp(r) = 0 otherwise. Here, we assume the donor concentra-
tion np(r) to be homogeneous in each n-GaAs layer.
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The boundary conditions for Poisson equation (7) are put on total potential
(9) [14, 15, 24] and the boundary values of potential ¢, are calculated from Eq. (9).
For the source and drain Ohmic contacts [6] the corresponding boundary conditions
have the following form:

Diot(rs(a)) = Vi(a), (12)

provided we take on the common Fermi energy of the leads (Fy = Fq = F') as the
reference energy,i.e. ' = 0. The metal gate adheres to the undoped semiconductor
layers; therefore, we have to take into account the Schottky barrier of height ¢p,
which leads to the following boundary condition at the gate surface:

@tot(rg) = Vg — ¢)B/6, (13)

where Vj is the gate voltage.

The numerical solution to Poisson equation (7) in the cylindrical coordinates
(p, z) for the model nanostructure (Fig. 1b) yields the values of potential 1 on
the mesh, i.e. ¢1(p;,2;). The total confinement potential is the sum of ¢ and
the double-barrier potential with the thin potential well, which determines the
extension of the QD in the vertical (z) direction. Since potential ¢1(p, z) very
weakly changes with z within the QD, it can be approximated [14, 24] by its
values at z = 0. For the further application in the HF method, it is convenient
to adjust an analytical formula to numerical solutions ¢1(p;,0). It was found [14]
that the six-order polynomial

3
pi(p) =D wip™ (14)
k=0
provides the accurate fit required.

The calculated confinement potential energy Uy = —ep; of the electron is
depicted in Figs. 2 and 3. Figure 2 shows the results for N = 12 electrons confined
in the QD, Vgs = 0, and Vi = —1 V. Six-order polynomial (14) (solid curve) has
been adjusted to the numerical solutions (full circles) in the interval 0 < p < R,
where R is the inner radius of the gate. The dashed curve shows the parabolic
fit to the numerical solutions. This fit is valid below the Fermi level (solid hor-
izontal straight line in Fig. 2). The charge density of the electrons confined in
the QD 1s shown by the thin solid curve. We note that the lateral confinement
potential energy Uy(p) can be fairly well approximated by the parabola below
the Fermi level, i.e. in this region of the QD, in which the electrons are local-
ized. The non-parabolic corrections start to play a role near and above the Fermi
energy. However, the incorporation of the non-parabolicity of the lateral confine-
ment potential is important for the accurate quantitative description [14, 24] of
the transport-spectroscopy data [6, 7]. The properties of the one- and two-electron
energy spectra in the non-parabolic (Gaussian) confinement potential were studied

in Ref. [25].
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Fig. 2. Potential energy U; = —e¢; (dots — numerical solutions of the Poisson equa-

tion, solid curve — fitted six-order polynomial, dashed curve — parabola fitted to the
numerical solutions below the Fermi energy) and charge density (thin solid curve) for
12 electrons confined in the QD as functions of cylindrical coordinate p. Solid horizontal

line corresponds to the Fermi energy. The curves are plotted for V; = —1 V and Vs = 0.
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Fig. 3. Quasi-three-dimensional plot of the potential energy U1 = —e@1 in the nanode-

vice of Tarucha et al. [6]. p and # are the cylindrical coordinates.

In Fig. 3 the quasi-three-dimensional profile of the potential energy U (p, z)
is displayed for the entire nanodevice. The confined electrons are localized in the
central region of the nanodevice, i.e. near p >~ 0 and z ~ 0. We note that potential
energy U is strongly dependent on the gate voltage V; and number N of electrons
confined in the QD [14, 24].
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5. Theoretical interpretation of transport spectroscopy results
for cylindrical gated quantum dots

The solutions of Poisson equation (7) provide the realistic confinement po-
tential, which together with the double-barrier potential was used [14, 15, 24] in
the HF method as an external potential in order to calculate the ground-state
energy (En) for N electrons bound in the QD. Since the relevant quantities, i.e.
potential ¢1 and one-electron wave functions ¢, are coupled through Egs. (8) and
(9), the Poisson and Hartree—Fock equations have to be solved by a self-consistent
procedure [14, 24]. As a result, we obtain [14, 24] the chemical potential for the
N-electron artificial atom as a function of the gate voltage (Fig. 4). In Fig. 4 the
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Fig. 4. Calculated chemical potential ux as a function of the gate voltage and num-
ber N of QD-confined electrons for Vas = 0. Thin vertical lines mark the positions of the
single-electron tunneling current peaks measured [6] at Vas ~ 0. The zero on the energy

scale is set at the common source—drain Fermi level (horizontal line).

zero on the energy scale corresponds to the common Fermienergy of the source and
drain (Fs = Fq = F'). For Vgs = 0 the single-electron tunneling occurs if /19\,_'_1 =F
(cf. condition (3)). Therefore, in Fig. 4 the crossing points of the chemical-potential
plots with the abscissa determine the positions of the tunneling-current peaks [6]
on the gate-voltage scale. In Fig. 4 the thin vertical lines mark the positions of
the current peaks measured by Tarucha et al. [6] at Vgs =~ 0. The agreement be-
tween the theoretical [14, 24] and experimental results [6] is very good. Each peak
of current results from the tunneling of the single electrons via the QD, while
the lack of current (intervals between the peaks) corresponds to the fixed num-
ber of the electrons confined in the QD i.e. the quantum Coulomb blockade [15].
The spacings between the current peaks are not equal to each other, which is a
quantum-mechanical effect, caused by the filling of the subsequent electronic shells
of the artificial atoms.

Kouwenhoven et al. [7] also reported the measurements of the differential
conductance of the nanodevice as a function of the drain—source voltage and
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Fig. 5. Stability diagram with Coulomb diamonds on the gate voltage—drain—source
voltage plane. Shaded (white) areas correspond to non-zero (zero) differential conduc-
tance [7]. Solid curves show the calculated [14, 24] boundaries of the single-electron
tunneling via the N-electron ground state, dashed curves show these boundaries for the
first excited state of the 8-electron artificial atom. In white, diamond-shaped regions,

the number of electrons confined in the QD is fixed and equal to N.

gate voltage and obtained the stability diagram with the diamond-shaped regions,
which are the signatures of the quantum Coulomb blockade. In Fig. 5 the white
(shaded) areas correspond to the zero (non-zero) conductance, determined in the
experiment [7]. The boundaries of the Coulomb diamonds, calculated according
to condition (3), are shown by solid lines. The curves of the positive and neg-
ative slope result from the condition: /19\,+1 = pg and /19\,+1 = pq, respectively.
In Fig. 5 the solid curves have been obtained for the single-electron tunneling via
the N-electron ground state and the dashed curves have been calculated under as-
sumption of the tunneling via the first excited state of the eight-electron artificial
atom [24]. Figure 5 shows that the calculated [24] positions, sizes, and shapes of
the twelve Coulomb diamonds very well agree with the experimental results [7].

6. Single-electron tunneling in a magnetic field
6.1. Vertical gated quantum dots

In Refs. [14, 15, 26] the approach presented in Sec. 4 was applied to a descrip-
tion of the magnetic-field behavior of the vertical gated QDs. The results [14, 15]
are depicted in Fig. 6, on which solid (dashed) curves show the calculated (mea-
sured) gate voltage, for which the N-th electron tunnels through the QD at zero
bias in the magnetic field applied in the vertical direction. The number of electrons
confined in the QD is constant in the regions between the curves in Fig. 6. In these
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Fig. 6. Calculated [14] (solid curves) and measured [6] (dashed curves) gate voltage,
at which the single electron tunnels via the gated QD at zero bias as a function of
the magnetic field. The number N of electrons confined in the QD is fixed in the areas
between the curves. Occupied one-electron orbitals are denoted by the symbols described
in the text. Thin dashed lines connect the cusps that correspond to the ground-state

transformations in the N-electron artificial atom.

regions, the quantum Coulomb blockade occurs [15]. In Fig. 6 the one-electron or-
bitals occupied by the electrons are denoted by the symbols s, p+, d+, fi, and
g+, which correspond to the magnetic quantum number m = 0, £1, £+2, +£3,
and %4, respectively. The results of calculations [14, 15] fairly well agree with the
experimental data [6, 7].

In Fig. 6 the cusps, connected by the thin dashed line, correspond to the
magnetic-field induced ground-state transformation in the N-electron artificial
atom. This double observation of the ground-state transformation results from
condition (3) of the single-electron tunneling, which is determined by the chemi-
cal potential, being the difference of the ground-state energies of the (N + 1)- and
N-electron systems. Therefore, each ground-state transformation is observed twice
as the cusps of the curves, which correspond to the tunneling of the (N +1)-th and
N-th electron through the QD. For each N the same ground-state transformation
appears at different magnetic fields, because the confinement potential changes
with the gate voltage [14, 15] applied to the gated QD. For the larger gate voltage
the N-electron system is more localized as the effect of the stronger confinement.
Therefore, the change of the electronic configuration, which is associated with the
occupation of the high-orbital momentum states, requires the weaker magnetic

field.



156 J. Adamowski, S. Bednarek, B. Szafran

6.2. Self-assembled quantum dots

The capacitance-spectroscopy measurements were performed by Miller
et al. [8] on the self-assembled QDs in an external magnetic field. The InAs QDs
were grown on the GaAs substrate in a Stranski-Krastanow growth mode. The
QDs obtained [8] were nearly uniform in size with an average radius 10 nm and
height 7 nm. The nanostructure [8] consists of the back (substrate) contact, made
of the heavily doped GaAs, the undoped GaAs tunnel barrier, the InAs wetting
layer with InAs self-assembled QDs, the AlAs/GaAs blocking barrier, and the
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Fig. 7. (a) Layer sequence in the nanodevice of Miller et al. [8]. The self-assembled InAs
QDs are distributed on the InAs wetting layer (not shown) between two GaAs layers.
(b) Sketch of the vertical-confinement potential energy along the growth direction for
gate voltage Vg, for which the QD is empty. ¢, and ti,¢ denote the distance between the
QD and the back contact and the total thickness of the nanodevice, respectively.

GaAs gate (top) contact (Fig. 7a). The single-electron charging of the QD was
tuned with the voltage (V) applied between the top (gate) and back contact
(Fig. 7b). The voltage, measured along the growth direction, linearly changes with
the distance from the substrate (Fig. 7b). If ¢}, is the distance from the back con-
tact to the QD layer and t;,; is the distance between the back and gate contact,
fraction A = 1y, /101 of the gate voltage is directly applied to the QD, changing the
electrochemical potential of the QD. For the self-assembled QDs [8] the condition
of the single-electron charging of the QD has the form (cf. Eq. (4))

P = ig + A(05 — Vi), (15)
where FY}, is the Fermi energy of the back contact and ¢p 1s the Schottky barrier
at the gate/blocking barrier interface (cf. Fig. 7b). Equation (15) determines the
positions of the capacitance peaks and additionally enables us to convert the energy
into the gate-voltage scale.

In the self-assembled QDs, the confinement potential originates from the
band-edge discontinuities. The shape of the QD can be approximated by the cylin-
der. Accordingly, in the calculations [16], the electron confinement potential energy

was assumed to have the following cylindrically symmetric form:
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Uy f < R and < H/2,
U(p,z>:{ o forpe andlEl< Y (10

0  otherwise,

where Uy is the conduction-band offset at the GaAs/InAs interface, R is the radius
of the QD, and H is its height. For the self-assembled QDs [8] the assumption
of the confining potential to be independent of the gate voltage as well as the
number of electrons in the QD is well justified. Using (16) as the external potential
energy, the N-electron Schrédinger equation was solved [16] by the unrestricted HF
method with the Gaussian basis (6). This allowed us [16] to determine the chemical
potential (u%) of the electrons confined in the QD. The chemical potential was
converted into the gate voltage with the help of Eq. (15).

The measured [8] and calculated [16] gate voltage corresponding to the ca-
pacitance peaks is plotted in Fig. 8 as a function of the magnetic field. In Fig. 8
each pair of curves (solid and dashed) corresponds to N electrons confined in the
QD. The cusps on the curves are the signatures of the magnetic-field induced
phase transitions [16]. For example, the cusp for N = 5 results from the change
of spin-orbital s2p? p, with the total magnetic quantum number M = —1 into
s2p? d_ with M = —4. The low-field phase transitions (at ~1 T) were not detected
in experiments [8]. Nevertheless, the theoretical [16] and experimental plots [8] as
well as the positions of the high-field phase transitions agree very well with each
other.

In the capacitance spectroscopy on the self-assembled QDs [8] — similarly
as in the gated QDs — the N-electron ground-state transformation can also be
observed on the two plots corresponding to NV and N 4+ 1 electrons confined in the
QD (Fig. 8). Since in the self-assembled QDs the confining potential is independent
of the gate voltage, the corresponding cusps are located at the same magnetic
field, denoted by arrows in Fig. 8. Because the experimental data (dashed curves
in Fig. 8) have been extracted from rather broad capacitance peaks [8], this effect
is weakly visible in experiment [8].

The quantitative discussion of the applicability of the quasi-two-dimensional
model of the self-assembled QD was another interesting outcome of Ref. [16]. Tt
was shown [16] that the self-assembled QDs of the comparable height and radius
cannot be treated as quasi-two-dimensional with electrons frozen in the ground
state, which 1s associated with the space quantization of the electron motion in the
z direction. If the height of the dot exceeds the dot radius, the excited one-electron
states, associated with the vertical space quantization, start to play a role, which
changes the symmetry of the N-electron wave function and strongly affects the
magnetic-field behavior [16]. The theoretical predictions [16] have not yet been
confirmed by experiments.

7. Discussion

Several theoretical papers [9-15, 20, 27, 28] were addressed to the electronic
properties of vertical gated QDs [6]. The authors of Refs. [9-13, 28] assumed the
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Fig. 8. Calculated [15] (solid curves) and measured [8] (dashed curves) gate voltage,
at which the self-assembled QDs are charged by the N-th electron, as a function of
the magnetic field. The arrows show the magnetic fields, at which the ground-state

transformation occurs in the N-electron artificial atom.

model confinement potential, which was independent of the gate voltage and the
number of electrons confined in the QD. Usually, it was the harmonic-oscillator
potential in the two [9-10, 12, 13] and three [20] dimensions. The anisotropic
harmonic-oscillator potential was used in Refs. [11, 19, 28]. The application of such
fixed confining potentials led to a qualitative description of shell filling observed
at zero bias [6]. The results of papers [14, 15, 24] show that — below the Fermi
level — the realistic confinement potential can be fairly well approximated by the
parabola (cf. Fig. 2), which explains why the simple parabolic approximation leads
to the qualitatively correct results. However, the accurate quantitative description
requires the electrostatics of the entire nanodevice to be taken into account. In
the papers [11-13, 19, 20, 28] an addition energy was calculated. This quantity,
defined as the difference between the chemical potentials, i.e. Auy = py41 — pn,
quite well shows the effects of shell filling, but cannot be directly compared with
experiment [6]. In order to compare the addition energy with experiment, one has
to know a factor that converts the energy scale into the gate-voltage scale [29]. As
shown in Ref. [24] (cf. also Fig. 4), the conversion factor strongly depends on the
gate voltage and number of electrons confined in the QD. These dependences are
neglected when using the fixed confining potentials [9-13, 19, 20, 28].

The Poisson equation was solved for the confining potential in gated QDs in
Refs. [21] and [27]. Nagaraja et al. [27] introduced a parallelepiped model for the
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cylindrical nanostructure of Tarucha et al. [6] and obtained the addition energy
in qualitative agreement with that energy extracted from the experiment [6]. The
lack of the proper symmetry and the undetermined conversion factor disabled
the authors [27] to obtain the quantitative agreement. Bruce and Maksym [21]
considered the another type of the nanodevice, made by Ashoori et al. [30]. These
authors [21] solved the Schrédinger equation for the fixed number (N = 3) of
electrons in the QD and the Poisson equation for the model nanostructure using the
Green function method. The screening of the electron—electron interaction within
the QD was taken into account with the help of image charges. This approach is
equivalent to that presented in Sec. 4 and Refs. [14, 15, 24]. The method elaborated
by the present authors [14, 15, 24] seems to be simpler, which allows us to perform
more extensive calculations with a larger number of electrons. In this method
(Sec. 4), all the charges in the nanodevice are included via the ionized-donor
charge density and boundary conditions put on the total electrostatic potential
(Eq. (9))]. This leads to the screening, which is dependent on the gate voltage and
number of electrons confined in the QD, which in turn gives rise to the realistic
confinement potential.

The vertical gated QDs [6] are fabricated by the technological process that in-
cludes the combination of wet and dry etching of the layer AlGaAs/InGaAs/GaAs
heterostructure. The side surface of the cylindrical pillar, obtained after this pro-
cess, can be rather rough and can contain many defects. These imperfections give
rise to a fluctuating potential near the surface. It arises a question: how does the
fluctuating potential of the surface affect the electronic properties of the QD7
A partial answer to this question can be given on a basis of the recent theo-
retical study [31] of clean and disordered QDs. Tt was shown [31] that the clear
picture of the shell filling is obtained for the clean QDs, while the randomly dis-
tributed impurity potentials considerably disturb the spectrum of the QD. The
transport-spectroscopy results for the gated QDs [6, 7] are quite regular with
sharp current peaks (cf. Figs. 4 and 5). Based on the regular pattern of the cur-
rent and conductance peaks [6, 7], we can state that the fluctuating potentials,
created by the defects on the cylinder surface, have negligible influence on the
electronic properties of QDs. The range of the fluctuating potential that stems
from the remote surface of the pillar is too small to be effective in this region of
the QD, in which the confined electrons are localized (cf. Fig. 2).

An attempt of a theoretical description of the capacitance-spectroscopy re-
sults [8] for the self-assembled QDs was undertaken by Warburton et al. [32]
with the use of the two-dimensional parabolic confining potential. The calcu-
lations [32] were performed with the two fitting parameters, i.e. the oscillator
energy and oscillator length, which were treated as independent of each other.
As a result, the authors [32] separately treated the energy and length scales in
the harmonic-oscillator problem, which is completely unjustified. As discussed
in Ref. [16], the two-dimensional model is too poor for the self-assembled QDs;
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moreover, the breaking of the generalized Kohn theorem [33, 34], observed in
the self-assembled QDs [35], suggests that the confinement potential significantly
differs from the parabolic potential. For the self-assembled QDs, the model con-
fining potentials in the form of the finite rectangular potential well [15] and the
Gaussian potential [25] much better account for the conduction-band offset at the
InAs/GaAs interface and the varying composition within the InGaAs dots [36].

8. Conclusions

The transport- and capacitance-spectroscopy methods allow us to determine
the energy spectrum of QD-confined electrons with different accuracy. The accu-
racy of the transport spectroscopy performed on a single gated QD [6] is con-
siderably larger than that of the capacitance spectroscopy made on randomly
distributed self-assembled QDs [8]. In the latter case, the accuracy is limited by
the random distribution of the QDs, size fluctuations, and interdot coupling. In
the transport spectroscopy, the tunneling current peaks detected as functions of
the gate voltage at zero bias are narrow [6], which allows us to extract from their
positions the energy levels of artificial atoms with an uncertainty of a few meV.
On the contrary, the peaks of the differential capacitance [8] are rather broad and
the estimated uncertainty of these measurements is about 5 meV [8].

The conditions of the single-electron tunneling (Eqgs. (3) and (4)) involve the
chemical potential, which was calculated in Refs. [14-16] by the HF method. The
HF method is based on the quantum-mechanical variational principle; therefore, it
provides upper bounds on the true energy of the considered system. The systematic
overestimation of the energy in the HF calculations results from the neglected
electron—electron correlation. For the QDs of the small size [6, 8] the error of
the HF upper bounds on the ground-state energy was estimated [22] to be about
1 meV. Therefore, this error is smaller than the estimated uncertainty of both the
transport [6] and capacitance [8] spectroscopy experimental results.

The HF estimates can be improved when using the CI method. Due to
its computational complexity, the CI calculations were mainly performed in the
framework of the two-dimensional model of the QDs [9, 11]. The LDA approach
provides another possible method for taking into account the correlation in QDs
[10, 13, 19, 28].

The nanodevice [6] with the gated QD is a prototype of a single-electron
transistor (SET) [37]. Figures 4 and 5 illustrate the operation of the SET at zero
and non-zero bias, respectively. When varying the gate voltage the subsequent
transport windows are opened and closed, which corresponds to the SET being
either in the on- or off-state. Contrary to the conventional transistor, the SET
can be switched on and off at discrete gate-voltage values. At low temperature,
the operation of SET can be tuned by the external voltages with a high precision.
However, at the present stage of the nanotechnology, the direct application of the
gated QD [6] to the room-temperature SET operation seems to be rather difficult.
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The results of Refs. [14, 15, 24] are based on the stationary treatment of the
single-electron tunneling via the QDs. We would like to comment on the applicabil-
ity of this approach to this essentially dynamic process. The physical interpretation
of single-electron tunneling conditions (3) and (4) is the following: these conditions
determine the borders between the subsequent Coulomb blockade regions (Figs. 4
and 5). The quantum Coulomb blockade [15] is associated with the formation of
the stationary quantum state of the N-electron artificial atom. If either the gate
voltage or the drain—source voltage crosses the borders determined by conditions
(3) and (4), then — as a result of the single-electron tunneling — the N-electron
system makes an abrupt transition into the (N 4 1)-electron stationary state. This
allows us to determine the positions of current and capacitance peaks from con-
ditions (3) and (4). We note that this approach to the single-electron tunneling
spectroscopy on the artificial atoms is similar to that used in the interpretation of
the optical-spectroscopy data for the natural atoms. The single-electron tunneling
via the QDs is an analog of the ionization of the natural atoms. In particular,
the addition energy (Apun) can be expressed as the difference between the ioniza-
tion energy and electron affinity [29]. A possible time-dependent approach to the
single-electron tunneling in QDs should result in a calculation of the heights and
shapes of the current and capacitance peaks.

9. Summary

In Refs. [14, 15, 24], a theoretical method has been proposed for a descrip-
tion of basic stationary electronic properties of the vertical gated QD [6, 7]. In this
approach [14, 15, 24], the confinement potential was not assumed as in the other
papers [9-13, 19, 20, 28], but calculated from the first principles of electrostat-
ics, which led to a realistic profile of this potential. This calculated confinement
potential was used in the HF method as the external potential for the electrons
confined in the QD. Since the quantum states of the confined electrons affect
the ionized donor distribution, i.e. the external confining potential, the result-
ing Poisson—Schrodinger problem had to solved in a self-consistent manner. The
self-consistent procedure, elaborated in Refs. [14, 15, 24], enabled us to obtain
the complete quantitative description of the spectacular transport-spectroscopy
results [6, 7]. To the best of our knowledge, only in Refs. [14, 15, 24], the shapes,
sizes, and positions of the Coulomb diamonds on the stability diagram [7] were
reproduced in the framework of the quantum-mechanical theory.

In the future the method [14, 15, 24] can be applied to QDs of arbitrary
geometry and may be extended to a description of the recently observed cotunnel-

ing [5] and Kondo effect [38].
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