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W e rev iew the the oreti cal prop osal for quantu m computin g w ith elec-
tron spins in quantum conÙned structures and discuss the essential require-
ments for its implementation . T he quantum bit is represented by the spin

of the electron , as opp osed to the charge (orbital ) degrees of freedom. I n
this conte xt, we analy ze a numb er of physical realization s of the elemen-
tary buildi ng blo cks for quantum computation : a universal set of quantum

gates, state preparation and measurement. Finall y, we discuss the pro duc-
tion, transp ort, and detection of electronic Einstein { Po dolski{ Rosen pairs,
w hich are an imp ortant resource for quantum communication.
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1. I n t rod uct io n

Co mputers whi ch operate wi th quantum states instead of conv enti onal cl as-
sical inform ati on woul d be capable of e£ cientl y solvi ng som e pro blems for whi ch
no e£ cient cl assical algori thm is kno wn [1]. In analogy to the smal lest uni t of
inf orm ati on in classical com puta ti on, the bi t, the m emory of a quantum com puter
can be represented as a col lection of quantum two- level system s, named quantum
bi ts, or qubi ts. At present, there is no wo rki ng (f ul l -scale) quantum com puter, the
reason being tha t a suita ble physi cal rea l izati on of qubi ts is qui te hard to Ùnd. Thi s
is so because the requi rem ents [2] for the im plementati on of qubi ts are extrem ely
dem andi ng: Quantum phase coherence needs to be m ainta ined over a long ti m e
compared to the length of an elementary step in the computa ti on, in order to al low
for quantum error correcti on. Ano ther requi rem ent is tha t i t shoul d be possible
to coupl e pai rs of qubi ts in a contro l led m anner in order to carry out elementa ry
quantum logic. In addi ti on to these operati ons on pai rs of qubi ts, operati ons on
sing le qubi ts need to be impl emented. It is a lso requi red tha t at the end of a
computa ti on, the qubi ts can be read out by perform ing a quantum m easurem ent
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separatel y on each qubi t. And Ùnal ly, the design of the quantum computer should
be scalabl e to a large num ber of qubi ts.

System s inv olving tra pped ato m s, cavi ty QED , or nucl ear m agneti c reso-
nance (see Ref. [3] for an overvi ew over existi ng experim ental pro posals) seem to
sati sfy all but the scal ing requi rement from above, and smal l-scale quantum gate
operati ons wi th these system s have indeed been demonstra ted in experim ent. In
contra st to the above proposals, it can be speculated tha t there is a good chance
for a sol id-sta te qubi t to be scaled up usi ng semiconducto r nanotechno logy, in a
sim i lar m anner as for conventi onal integrated circui ts. Several sol id-state imple-
m enta ti ons for quantum com puti ng have been proposed [3]. In thi s paper, we f ocus
on the idea of using electro n spins in coupl ed semiconducto r quantum dots as the
qubi ts of a quantum computer [4], and give an overvi ew of the theoreti cal work
whi ch wa s carri ed out in thi s area (see Fi g. 1 for a schemati c vi ew of the devi ce
under study). Ob vi ousl y, the spin of the electron is a natura l candi date for the
quantum bi t (qubi t) | every spin 1/ 2 represents preci sely one qubi t (we identi fy
j " i ² j 0 i and j # i ² j 1 i ). T reati ng the spin{ orbi t intera cti on and the coupl ing
to the envi ronm ent as smal l perturba ti ons thi s impl ies tha t one possible source

Fig. 1. A rray of quantum dots ( QDs), indicated by circles, w hich can be controlled

by electrical gating. T he electro des (dark gray) deÙne the conÙnement potential for the

electrons. By changing the gate voltages, electrons can be mo ved into the magnetized or

high- g layer, allow ing for spatiall y varying Zeeman splittin gs. Local magnetic Ùelds can

also be achieved by a current- carrying wire (indicated on the lef t of the QD array). N ow

the electron spin in each QD can b e addressed individ ual l y, e.g. through ESR pulses of an

additio nal in-plane magnetic ac Ùeld, b ecause every QD is sub j ect to a distinc t Zeeman

splitti ng. T his mechanism can b e used for single- spin rotations and the initial izatio n

step. C hanging the exchange coupling J betw een the QDs can b e done by low ering the

tunnel barrier b etw een the dots (the two rightmost QDs are draw n schematically as

tunnel- coup led).
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of errors in quantum com puta ti on, nam ely the leakage into logically \ undeÙned"
parts of the Hi lbert space, has al ready been avo ided.

The m oti vati on for doing quantum com puti ng com es from i ts potenti al to
outp erf orm classical com puters [1]. Thi s is possible thro ugh quantum algori thm s
whi ch m ake use of the quantum memory 's abi l i ty to exist in quantum sup erposi-
ti ons and to underg o a uni ta ry ti me evoluti on U j ˆ in i = j ˆ out i , where j ˆ in i denotes
the \ input" state whi ch is prepared before the com puta ti on starts and j ˆ out i i s
the Ùnal state, whi ch is subsequentl y m easured in order to obta in the resul t of the
computa ti on. A very useful fact is tha t all possible quantum algori thm s can be im -
pl emented by concatena ti ng one- and two -qubi t gates [5], theref ore i t is su£ cient
when we di scussthese two typ es of operati ons below.

In addi ti on to sati sfyi ng al l requi rem ents necessary for a scalable quantum
computer, a spin-qubi t, being atta ched to a mobi le electro n, can be tra nsported
along conducti ng wi res [6]. An interesti ng appl icati on of thi s possibi l i ty app ears to
be the creati on (say, in coupled quantum dots or near a sup erconducto r{ norm al in-
terf ace [7]) and tra nsport of spin-enta ngled electrons whi ch act as Einstei n{ Podol -
sky{ Rosen (EPR ) pai rs. Such EPR pai rs represent one of the funda m enta l re-
sources for quantum communi catio n [1]. W e incl ude a discussion of the use of
electronic EPR pai rs for quantum com muni cati on in thi s arti cle and show tha t
such EPR pai rs can be tra nsported and detected in tra nsport and noise m easure-
m ents in electronic nanostructures [8]. Enta ngled pai rs of parti cles have al ready
been produced and used for vari ous ta sks in quantum com munica ti on in several
exp eriments in quantum opti cs (see e.g. R ef. [9]). For m any appl icati ons, a disad-
vantag eof the sources whi ch are presentl y used there (param etri c downconversion)
is tha t entangled parti cles can onl y be pro duced in a stochastic manner and at
a very low rate. Thus there is a great dem and f or determi ni stic and f ast sources
of EPR pai rs. One candi date system for a source of enta ngled (l ocal ized or delo-
cal ized) spin qubi ts woul d be coupl ed quantum dots [6, 4]. A second possibi l i ty is
the use of s-wave superconducto r{ norm al juncti ons as a source of spin-enta ngled
electrons, expl oi ti ng the fact tha t the Cooper pai rs are in a sing let (and theref ore
enta ngled) state [6, 7].

2 . Co her en ce

At Ùrst sight, arbi tra ry quantum two -level system s coul d serve as qubi ts.
Ho wever, in al l pra cti cal cases, quantum systems are never compl etely isolated
from thei r envi ronm ent. The una voidabl e coupl ing to the envi ronm ent is the ori -
gin of decoherence whi ch creates errors in a quantum com puta ti on. If these errors
are rare enough, they can be corrected using quantum error correcti on [1]. There-
fore, only system s wi th slow decoherence are interesti ng for quantum com puta -
ti on. It is im porta nt to disti ngui sh the relaxa ti on ti m e T 1 and the (tra nsverse)
decoherence ti m e T 2 . The latter is usual ly shorter, and theref ore m ore rel evant
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for quantum com puti ng. If the spi n{ orbi t coupl ing is weak then the spi n coher-
ence ti m e | the ti m e over whi ch the phase of a superpositi on of spin-up and
spi n-down states is well deÙned | can be com pletel y di ˜erent from the charge
coherence ti m e (as determ ined e.g. from m easurem ents of the weak local izati on or
the Aha ronov{ Bohm e˜ect), and in fact i t is kno wn from magneto-opti cal experi -
m ents in bul k n -doped GaAs and in CdSe quantum dots tha t they can be orders
of m agni tude longer [10, 11]. These Ùndi ngs m oti vate the use of the spi n as the
qubi t in these structures rather tha n charge [4].

W e have pro posed to m easure T 2 of a sing le spi n in such a devi ce di rectl y vi a
a tra nsport exp eriment by appl yi ng electron spin resonance (ESR ) techni ques [12].
The idea is to extra ct the decoherence ti m e T 2 by pro bing the sequential tunnel ing
current thro ugh the quantum dot whi ch is atta ched to tw o leads in the presence of
an appl ied ESR Ùeld. W e assume a situa ti on in whi ch the Zeeman spli tti ng in the
leads is negl igible, but on the dot we have g ñ B B > Â ñ and g ñ B B > k B T . Thi s
can be achieved e.g. by using m ateri als wi th di ˜erent g- factors for the dot and the
leads. Then, the stati onary master equati on for the reduced density m atri x of the
quantum dot in the basis j " i , j # i , j S i = ( j " # i À j # " i )=

p

2 (wi th corresp ondi ng
energies 0 = E

"
< E

#
< E S ) is deri ved. W e can assume tha t the tri plet is higher in

energy and does not contri bute to the sequential tunnel ing current. In the regim e
E S > ñ 1 > E S À g ñ B B > ñ 2 the current is blocked in the absence of the ESR
Ùeld due to spin conservati on. Onl y in the presence of the ESR Ùeld there can be
a sequenti al tunnel ing current ; after som e calcul ati on we Ùnd for the stati onary
current [12]

I ( ! ) /

V #"

( ! À g ñ B B ) 2 + V 2
#"

; (1)

where the wi dth of the resonance at ! = g ñ B B is given by the to ta l spi n de-
coherence rate V

#"
= ( W S "

+ W S #
)=2 + 1 =T 2 . Here, W S ¥ denotes the rate for

the tra nsiti on from the state j ¥ i = j " i ; j # i to the singlet j S i due to the tunnel
coupl ing to the leads. Theref ore, the inv erse of the observed l ine wi dth 1 =V

#"
rep-

resents a lower bound for the intri nsic sing le-spin decoherence ti me T 2 . For Ùnite
tem peratures, in the l inear response regime Â ñ < k T the current has roughl y
the standard sequential tunnel ing peak shape coshÀ 2 [ ( E S À E

#
À ñ ) =2 k B T ] where

ñ = ( ñ 1 + ñ 2 ) =2 , whi le the wi dth of the resonance given in Eq. (1) rem ains unaf-
fected.

Al tho ugh theo ry can onl y give us some ideas about the mechanisms for de-
coherence rather tha n rel iabl e quanti ta ti ve predi cti ons of the decoherence ti m es,
we report here on recent calcul ati ons identi fying the dominant spin{ orbi t e˜ects
in GaAs quantum dots leading to unusua l ly low phonon-assisted spin-Ûip rates,
whi ch suggest long spi n-decoherence ti m es. In R ef. [13] the spin-Ûip pro cesses
whi ch accom pany phonon-assisted tra nsiti ons between di ˜erent discrete energy
levels (or Zeeman subl evels) in GaAs electron quantum dots were studi ed wi thi n
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a one-electro n Ha m il to nian derived from the Ka ne m odel . Several di ˜erent m ech-
ani sms ori ginati ng from spin{ orbi t coupl ing are shown to be responsi ble for such
pro cesses and the rates À = T À 1

1
for al l m echanisms are evaluated in the presence

or absence of a m agneti c Ùeld. It turns out tha t the m ost e˜ecti ve spin-Ûip m ech-
ani sms in the 2D case are related to the broken inversi on symm etry , either in the
elementa ry crysta l cell or at the hetero interf ace. The spin relaxati on of 2D elec-
tro ns local ized in quantum dots is m uch smal ler tha n tha t of delocal ized electrons
because the contri buti on of lowest order in the spin{ orbi t coupl ing constant Ù van-
ishes due to the boundedness of the wa vefuncti on. Theref ore, the contri buti ons to
the spi n-Ûip rate proporti onal to Ù 2 are either absent or suppressed by addi ti onal
smal l parameters (e.g. rela ted to the size quanti zati on in the z di recti on). A Ùnite
Zeeman spli tti ng also leads to contri buti ons / Ù 2 ,

À ' À 0 ( B )
mÙ 2

ñh! 0

˚
g ñ B B

ñh! 0

Ç2

; (2)

where ñh! 0 i s the distance between the orbi ta l levels in the dot, À 0 ( B ) i s the inelastic
ra te wi tho ut a spin Ûip. Spin-Ûip tra nsiti ons between the Zeeman subl evels (wi th
energy spacing smal ler tha n ñh! 0 ) occur at a rate whi ch is at low tem perature
pro porti onal to the Ùfth power of the Zeeman spli tti ng,

À '

( g ñ B B ) 5

ñh (ñh! 0 ) 4
Ê p ; (3)

where Ê p / Ù 2 characteri zes the streng th of the e˜ecti ve spin-pi ezo-phonon cou-
pl ing in the heterostructur e and ranges from ¤ 7 È 1 0 À 3 to ¤ 6 È 1 0 À 2 depending
on Ù (e.g. À ¤ 1 : 5 È 1 0 3 sÀ 1 for ñh! 0 = 1 0 K and B = 1 T). It is also shown
tha t tw o-phonon contri buti ons to the spin-Ûip tra nsiti ons between the Zeeman
subl evels are i rrelevant at tem peratures k B T § ñh! 0 .

3 . In i t ia li zat ion

Bef ore a typi cal quantum com puta ti on is started, ini ti a lized qubi ts are re-
qui red, i .e. qubi ts in a wel l deÙned state such as spin up, j " i ² j 0 i . Thi s can
be done by exposing al l spi ns in the quantum register to a large m agneti c Ùeld
g ñ B B ƒ k T and al lowing them to relax to the ground state. Thi s compl etely po-
lari zed state corresponds to the logical state j 0 0 0 0 . . .i in whi ch all qubi ts are set to
zero. The requi red magneti c Ùeld can be appl ied local ly or real ized by forci ng the
electrons (vi a externa l gates) into a m agneti zed lay er/ dot, into a lay er wi th a di ˜er-
ent e˜ecti ve g- factor [4, 6] or wi th polarized nucl ear spins (Overha user e˜ect) [14]
etc. , see also Fi g. 1. Polarized electrons can also be injected into an empty quan-
tum dot i f a spin-polari zed current can be pro duced, such as by spin-polarizing
m ateri als [15, 16] or by spin-Ùlteri ng wi th the help of another dot [17]. Sta rti ng
from the com pl etely polari zed state j 0 0 0 0 . . .i , one can create arbi tra ry (pro duct)
input states by appl yi ng the single-spin rota ti ons described in Sec. 6.
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4. L at er al ly co u pl ed qu an t um dot s

In coupl ed quantum dots, there is a m echani sm whi ch al lows f or the con-
tro l led intera cti on of two spin-qubi ts, resulti ng from the combined acti on of the
Co ulomb intera cti on and the Paul i exclusi on pri nci pl e. The ground state of two
coupl ed electrons in the absence of a m agneti c Ùeld is a spin sing let, whi le the
Ùrst exci ted state in the presence of su£ cientl y strong Coulomb repul sion is a spin
tri plet. Further excited states are separated from these two lowest states by an
energy gap, given either by the Coul omb repul sion or the single-parti cle conÙne-
m ent. Thus, the low-energy dyna m icsof the two excesselectrons in tunnel -coupl ed
quantum dots can be described by the e˜ecti ve Hei senberg spin Ha mi lto nian

H s ( t ) = J ( t )S 1 Â S2 : (4)

Here, J ( t ) denotes the exchange coupl ing between the two spins S1 and S 2 whi ch
is given by the separati on in energy between the tri plet and the sing let. Assum -
ing tha t J i s zero (\ swi tched o˜ " ) except for a short dura ti on §s (\ pulse" ) wi th
the restri cti on

R
§s

0 dtJ (t ) =ñh = J 0 § s=ñh = ¤ (m od 2 ¤ ), we obta in a ti m e evoluti on

U ( t ) = T exp( i
Rt

0
H s( § )d§ = ñh ) whi ch corresponds to the \ swap" gate U sw , inter-

changing the states of qubi t 1 and 2. Swappi ng qubi ts is not su£ cient for quantum
computa ti on; however, the so-cal led square-ro ot- of-swap U

1 = 2
sw , obta ined under the

condi ti on
§

0

d t
J ( t )

ñh
=

J 0 § s

ñh
=

¤

2
(m od 2 ¤ ) (5)

turns out to be a u n i v e r sa l quantum gate when com bined wi th single-qubi ts
rota ti ons (see Sec. 6), i .e. arbi tra ry quantum evoluti ons (a lgori thm s) can be con-
structed f rom these elements. The uni versa l ity of U

1= 2
sw i s pro ven by constructi ng

the kno wn uni versa l gate XOR [18], thro ugh combi natio n of U
1= 2

sw and single-qubi t
operati ons exp ( i¤ S z

i =2 ) , appl ied in the sequence [4] U X O R = ei ( ¤ = 2 ) S e i ( ¤ = 2 ) S

È U
1= 2
sw e

i¤ S
U

1 = 2
sw . Thus, the study of general quantum computa ti on can be re-

duced to the study of sing le-spin rota ti ons and the exchange m echanism, i .e. how
J ( t ) can be contro l led exp erimenta l ly. The fol lowing inv estigatio n of the exchange
m echani sm is based on the idea to change J ( t ) can be \ swi tched o˜ " and \ swi tched
on" by ra ising or lowering the tunnel ing barri er between the dots. In addi ti on to
the barri er, there are other externa l parameters whi ch can be used to contro l the
exchange coupl ing J ( t ) .

W e consider Ùrst a system of tw o coupl ed quantum dots in a tw o-dimensional
electron gas (2D EG), conta ini ng one (excess) electron each. The arra ngement of
the dots is as depi cted in Fi g. 1, and we requi re tha t the di stance 2 a between the
dots is su£ cientl y smal l, al lowing the electrons to tunnel between the dots (f or a
lowered barri er). The m odel Ham i l to nian for thi s system is

H =

i =1 ;2

h i + C + H Z = H or b + H Z ; (6)
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where the sing le-electron dyna mics in the 2D EG (x y -pl ane) is described thro ugh

h i =
1

2 m

h
p i À

e

c
A ( r i )

i
2

+ V ( r i ) ; (7)

wi th m being the e˜ecti ve mass and V ( r i ) the conÙnement potenti al as given
below. A magneti c Ùeld B = (0 ; 0 ; B ) i s appl ied along the z -axi s, whi ch coupl es to
the electro n spin thro ugh the Zeeman intera cti on H Z and to the charge thro ugh
the vector potenti al ( ) = B

2
( À y ; x ; 0 ) . The screening length Ñ in almost depleted

regions (l ike f ew-electron quantum dots) can be exp ected to be much larger tha n
the screening length in bul k 2DEG regions (where i t is 40 nm for GaAs). For
smal l quantum dots, say Ñ ƒ 2 a ¤ 4 0 nm , we theref ore have to consider the
unscreened Coul omb intera cti on C = e2 =ç j 1 À 2 j , where ç i s the stati c di electri c
constant. The conÙnement and tunnel -coupl ing in Eq. (7) for latera l ly al igned dots
is m odeled by the quarti c potenti al

V ( x ; y ) =
m! 2

0

2

1

4 a 2
x 2

À a 2
2

+ y 2 ; (8)

wi th the inter- dot distance 2 a and a B = ñh =m! 0 the e˜ecti ve Bohr radius of
the dot. Thus, at large separati on a ƒ a B the dots are m odeled as two harm oni c
wel ls wi th frequency ! 0 . Thi s is justi Ùed by the experim ental evidence tha t the
low- energy spectrum of sing le dots is well described by a parabolic conÙnement
potenti al [19].

W e consider only the two lowest orbi tal eigenstates of H orb , leavi ng us wi th
one sym metri c (spi n-sing let) and one anti sym metri c (spi n- tri plet) orbi ta l sta te.
The spin state f or the sing let is j S i = ( j " # i À j # " i ) =

p

2 , whi le the tri pl et spin
states are j T 0 i = ( j " # i + j # " i ) =

p

2 , j T+ i = j " " i , and j T i = j # # i . At su£ cientl y
low tem peratures k T § ñh! 0 , hi gher lyi ng states are frozen out and H orb can be
repl aced by the spin Ha mi lto nian, Eq. (4), and the exchange energy J = ¯ t À ¯ s i s
given as the di ˜erence between the tri pl et and sing let energy. For the calcul ati on
of these energies, the analogy between ato ms and quantum dots can be used. Using
the Hei tl er{ London ansatz from molecular physi cs (wi th ground- state sing le-dot
orbi tals) we obta in [14]:

J =
ñh! 0

sinh 2 d 2 2 b 1
b

3

4 b
1 + bd 2

+ c
p

b e b d I 0 b d 2
À ed ( b 1 =b ) I 0 d 2 ( b À 1 = b) ; (9)

where d = a= a B i s the dim ensionl ess di stance between the dots, b = B =B 0 =

1 + ! 2
L = ! 2

0
the magneti c com pression factor, ! L = eB =2 mc the Larm or fre-

quency, and I 0 denotes the zeroth- order Bessel functi on. The Ùrst term in Eq. (9)
ori ginates f rom the conÙnement potenti al , whi le the term s pro porti onal to the pa-
ram eter c = ¤ =2 ( e2 =ça B ) =ñh! 0 com e from the Coul omb intera cti on C . The term
wi th the leading minus sign is the exchange term . W e are m ainly interested in the
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Fig. 2. Exchange coupling J (f ull line) for quantum dots in a GaA s structure w ith

conÙnement energy ñh ! = 3 meV and c = 2 :42 . W e plot the conventional short- range

H ubbard result J = 4 t 2 = U (dashed- dotted line) and the extended H ubbard result [14]

J = 4t 2 =U + V (dashed line) for comparison . In (a), we plot J as a function of the

magnetic Ùeld B at Ùxed inter- dot distance d = a=a B 0: 7, while in (b) w e vary the

inter- dot distance d a=a at zero Ùeld ( B ).

weak coupl ing l imi t , where the ground- state Hei tl er{ Lo ndon ansatz
is self-consistent. W e refer to Fi g. 2 for a pl ot of as given in Eq. (9) as a functi on
of and . No te tha t , i .e. the sing let is the ground state, whi ch
is general ly true for a two -parti cl e system wi th ti me-reversal invari ance. Over a
wi de range of the param eters and , i t can be observed tha t the sign of
changes from positi ve to negati ve at a Ùnite value of (f or the param eters chosen
in Fi g. 2a at T). Furtherm ore, is suppressed exponenti ally either by
compression of the electro n orbi ta ls thro ugh large m agneti c Ùelds ( ), or by
large distances between the dots ( ), where in both casesthe orbi ta l overl ap
of the two dots is reduced. Thi s exponenti al suppressi on, conta ined in the sinh
pref actor in Eq. (9), is partl y compensated by the exponenti al ly growi ng exchange
term exp . Al to gether, decays exp onenti al ly as exp for
large or . Since the sign reversa l of at the point of a singlet{ tri plet crossing
resul ts f rom the long-range Coul omb intera cti on, i t is not conta ined in the stan-
dard Hubba rd m odel whi ch ta kes only short- range intera cti on into account. The
latter predi cts in the l im it (see Fi g. 2). Further reÙne-
m ent of the Heitl er{ Lo ndon resul t Eq. (9) was achieved by ta ki ng higher levels
and doubl e occupancy of the dots into account (im plemented in a Hund{ Mul l ikan
appro ach), whi ch leads to qual i ta ti vely simi lar results [14], in parti cul ar concerni ng
the singlet{ tri plet crossing. Num erical calculati ons whi ch ta ke m ore sing le-parti cle
levels into account [20] have conÙrmed the results presented here.

Verti cal ly tunnel -coupl ed quantum dots have been pro duced in m ulti layer
self-assembled quantum dots (SAD ) [21] as wel l as in etched mesa hetero struc -
tures [22]. In order to investigate quantum gate operati ons in these structures we
appl y the same metho ds as described in the previ ous section f or latera lly coupl ed
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Fig. 3. (a) Schematic draw ing of tw o vertically coupled quantum dots having di˜erent

lateral radii a B + and a B À . Magnetic and electric Ùelds can be applied either in-plan e

( B
k

; E
k
) or perp endicu larl y ( B ? ; E ? ). (b) Quartic double- w ell potential used for

mo delin g the vertical conÙnement V v . (c) Mechanism for switching of the spin{spi n

coupli ng betw een dots of di˜erent size by means of an in- plane electric Ùeld E k at

B . T he parameters for this plot are h! meV , d , ˜ a =a =

and ˜ a =a = . T heref ore, E h ! =e a : mV /nm and A

˜ ˜ = ˜ ˜ . T he exchange coupli ng J decreases exponentiall y on the

scale E = A mV / ñ m for the electric Ùeld. The exchange coupling is switched \on "

for E and \o˜ " for E mV / ñ m.

dots, but now we extend the Ham i lto ni an Eq. (7) from two to three dim ensions and
use a three- dim ensional conÙnement potenti al = + [23]. W eim plement the
verti cal conÙnement as a quarti c potenti a l simi lar to Eq. (8), wi th curvature

at = (see Fi g. 3b), im plyi ng an e˜ecti ve Bohr radi us = ñ and
a dim ensionl ess distance = . We have m odeled a harm oni c potenti al for
the latera l conÙnement, whi le we have al lowed for di ˜erent sizes of the two dots

= ñ . Thi s results in addi ti onal swi tchi ng mechani sms as expl ained
in the next paragraph.
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The three- di mensional setup whi ch we are consi dering impl ies tha t the ex-
change intera cti on is not only sensiti ve to the m agnitude of the appl ied Ùelds,
but also to thei r di recti on. W e now give a bri ef overvi ew of our resul ts [23] for
in-plane (B

k
, E

k
) and perpendicul ar (B ? , E ? ) Ùelds; thi s setup is i l lustra ted in

Fi g. 3a: (1) In- plane m agneti c Ùelds B k suppress J exp onenti al ly; perpendi cular
Ùelds in latera l ly coupl ed dots have the sam e e˜ect. (2) Perp endicul ar m agneti c
Ùelds B ? reduce the exchange coupl ing between identi cally sized dots ˜ 0 + = ˜ 0 À

onl y slightl y. However, i f the tw o dots have di ˜erent sizes, a B + < a B À , the behavi or
of J ( B ? ) i s no longer monoto nic: Increa sing B ? from zero am pl iÙesthe exchange
coupl ing J unti l both electronic orbi ta ls are m agneti cal ly com pressed to appro x-
im atel y the same size, i .e. B ¤ 2 m˜ 0 + ! z c= e. From thi s point on, J decreases
weakl y, as for identi cal ly sized dots. (3) Perp endicul ar electri c Ùelds E ? detune
the sing le-dot levels, and thus reduce the exchange coupl ing; the same resul t was
obta ined for latera l ly coupl ed dots and in-pl ane electri c Ùelds [14]. (4) In- plane
electri c Ùelds E

k
and di ˜erent dot sizes pro vi de another swi tchi ng mechanism

for J . The dots are shifted para l lel to the Ùeld by Â x
Ï

= E
k

=E 0 ˜ 2
0 Ï

, where
E 0 = ñh! z =ea B . Thus, the larger dot is shifted a greater di stance Â x

À
> Â x + and

so the mean distance between the electrons grows as d 0 =
p

d 2 + A 2 (E k =E 0 ) 2 > d ,
ta ki ng A = ( ˜ 2

0 +
À ˜ 2

0 À
) =2 ˜ 2

0 +
˜ 2

0 À
. Since the exchange coupl ing J i s exp onen-

ti al ly sensiti ve to the inter- dot di stance d 0 , i t is suppressed exponenti al ly when an
in-plane electri c Ùeld is appl ied, J ¤ exp[ À 2 A 2 ( E

k
=E 0 ) 2 ] , whi ch is i l lustra ted in

Fi g. 3c. We have thus described an al terna ti ve to the swi tchi ng m echanismsinvol v-
ing a magneti c Ùeld, nam ely an exp onenti al swi tchi ng m echani sm for a quantum
gate relyi ng only on a tuna ble electri c Ùeld.

6. Sin g le-spi n rot at ions

In addi ti on to at least one (no n- tri vi al ) tw o-qubi t gate (e.g. XOR or square-
- root- of-swap), i t is requi red for quantum com puta ti on to perform one-qubi t oper-
ati ons, whi ch in the context of spin physi cs are equivalent to sing le-spi n rota ti ons.
Thi s amounts to exposing any speciÙc qubi t to a ti me-varyi ng Zeeman coupl ing
( g ñ B S Â B )( t ) [14], whi ch is contro l led thro ugh the m agneti c Ùeld B and/ or the
g- factor g . Since only rela ti ve rota ti ons are relevant, i t is su£ ci ent to rota te al l
spi ns of the system simulta neousl y (e.g. by an externa l Ùeld B ). Relati ve rota ti ons
are then achieved by changing the Larm or frequency of indivi dual spi ns.

Ma gneti c Ùelds whi ch vary strongly on the length scale given by the inter- dot
di stance can be generated using vari ous techni ques, e.g. wi th the m agneti c ti p of
a scanni ng f orce m icroscope, a m agneti c di sk wri ti ng head, by placi ng the dots
above a grid of current- carryi ng wi res, or by placi ng a smal l wi re coi l above the
dot. Al terna ti vel y one can use ESR techni ques [14] to perf orm single-spin rota ti ons,
e.g. i f a certa in qubi t has to be Ûipp ed (say from j " i to j # i ) one appl ies an ac
m agneti c Ùeld perpendicul ar to the " -axi s whi ch matches the Larm or frequency of
tha t parti cul ar electro n.
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The exampl es described in the fol lowi ng show tha t for both sing le-spin and
two -spin operati ons, the contro l over the spin can be achieved thro ugh charge (i .e.
orbi tal wa ve functi on) m ani pulati on [4]. The coupl ing of the qubi t- spins to a layer
of m ateri al wi th a hi gher (or lower) g- factor can be achi eved by changing the equi -
l ibri um positi on of the electron by electri cal gati ng [6, 24] (cf . Fi g. 1). If the electron
wa ve functi on is pushed into a region wi th a di ˜erent (e˜ecti ve) g-f actor, a relati ve
rota ti on around the di recti on of B by an angle of ¢ = ( g 0 B 0

À g B ) ñ B § =2 ñh i s pro-
duced. In bul k semiconducto rs the free-electron value of the g-factor g 0 = 2 : 0 0 2 3

i s m odiÙed by spin{ orbi t coupl ing. Sim ilarly , the g- factor can be dra stical ly en-
hanced by dopi ng the semiconducto r wi th m agneti c im puri ti es [15, 16]. In conÙned
structures such as quantum wells, wi res, and dots, the g-factor is further m odi Ùed
and becom es sensiti ve to an externa l bi as vol ta ge [25]. Num erical analysis of a
system wi th a layered structure (Al GaAs{ GaAs{ InAl GaAs{ Al GaAs) has shown
tha t by shifti ng an electron from one layer to another by electri cal gati ng [26] the
e˜ecti ve g-factor can be varied by about [24] Â g e˜ ¤ 1 .

Lo cal ized m agneti c Ùelds app ear to be more di £ cul t to im plement tha n
the nearest-neighbor exchange coupl ing in some cases. In the fol lowing , we l ist
a numb er of possibi l i ti es to use exclusivel y the exchange m echanism to achi eve
both the two- qubi t and the single-qubi t gates. By means of exchange coupl ing to
ferrom agneti c (FM) dots or to an FM layer (Fi g . 1), the coupl ing of a single spin
S to an ef f ectiv e Zeeman Ùeld ( g ñ B B )( t ) can be obta ined. Regions (layers) wi th
increased magneti c Ùeld can be pro vi ded by an FM m ateri al whi le an e˜ecti ve
m agneti c Ùeld can be produced e.g. wi th dyna mically polarized nucl ear spins (the
Overha user e˜ect) [14]. Ferromagneti c dots can be made of magneti c m etals (e.g.
Co or D y) or m agneti c semiconducto rs, e.g. Mn- doped GaAs (in thi s case,exchange
e˜ects are equivalent to an e˜ecti ve g-factor descripti on).

Fi nal ly, another possibi l ity for exchange-only quantum com puta ti on con-
sists of using an appro pri ate encoding for the qubi ts [27]. It turns out tha t the
Hei senberg intera cti on Eq. (4) between the spi ns representi ng the qubi ts alone is
su£ cient to (exa ctl y) perform any quantum computa ti on i f each qubi t is encoded
usi ng (at least) three spins (i nstead of onl y one). A possible encoding for thi s is
j 0 L i = j S ij " i , j 1 L i =

p
2 =3 j T + ij # i À

p
1 =3 j T 0 ij " i . One-qubi t gates on the coded

qubi ts can now be perform ed by appl yi ng the exchange intera cti on between the
spi ns of the code; the Ham i l to nian H 1 2 = J 1 2 S1 Â S 2 e.g. generates rota ti ons about
the z -axi s for the coded state j ê L i = ˜ j 0L i + Ù j 1L i . General ly, i t can be shown
tha t any single-qubi t ro ta ti on in code space can be perform ed wi th a sequence
inv olving at m ost four steps of appl yi ng the exchange H i j between the adj acent
spi ns i and j in the case where the spins are arra nged in a l ine (i .e. wi th coupl ings
H 1 2 and H 2 3 ), or three steps i f the arrangement is in a \ tri angle" i .e. H 1 3 i s also
possible. A num erical analysis was perform ed in order to Ùnd the exact num ber
of computa ti onal steps for perform ing XOR between two coded qubi ts [27] wi th
the result tha t XOR invol ves 19 sequenti al appl icati ons of a nearest-neighbor ex-
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change intera cti on. In the case where para l lel (sim ul ta neous) exchange coupl ings
are al lowed, we Ùnd tha t 7 or 8 steps are requi red, depending on the geom etry
of the arra ngement. These resul ts quanti fy the expense in numb er of devi ces (a
facto r of three m ore) and com puta ti onal steps (ro ughl y a factor of ten m ore) i f
one wants to use the encodi ng m etho d described above instead of impl ementi ng
the contro l of local (rea l of e˜ecti ve) magneti c Ùelds.

7. Sin g le-sp in m eas ur em ent

At the end, the resul t of a quantum computa ti on has to be read out, i .e.
the state of each qubi t (each indi vi dual electro n spin) needs to be m easured, e.g.
in the j " i , j # i basis. The di rect detecti on of the ti ny magneti c m oment ñ B of
an indi vi dual electro n spin is very di £ cul t, but there exi st several proposals for
reading out sing le spins using m ore real istic metho ds. One of them is to use the
tunnel ing of the electron into a sup ercooled paramagneti c dot [4, 6], thereby in-
duci ng a magneti zati on nucl eati on from the metastabl e phase into a ferrom agneti c
dom ain. The dom ain's m agneti zati on di recti on is along the measured spin and can
be detected by conventi onal m etho ds and pro vi des a 75% rel iable resul t for the
read out of the electron spi n.

Ano ther idea is to detect the spin of an electron vi a measuri ng charge, i .e.
vo l tage or current [4]. It is kno wn how to bui ld electro meters wi th single-charge
detecti on capabi l i ti es; resoluti ons down to 1 0 À 8 of one electro n charge have been
reported [28]. A stra ightf orw ard concept yi elding a potenti al ly 100% rel iable mea-
surement requi res a swi tcha ble \ spin-Ùlter" tunnel barri er whi ch al lows only, say,
spi n-up but no spin-down electrons to tunnel . W hen the measurement of a spin
in a quantum dot is to be perform ed, tunnel ing between thi s dot and a second
dot, connected to an electrom eter, is swi tched on, but only spin-up electrons are
al lowed to pass(spi n-Ùlteri ng). Thus i f the spi n had been up, a chargewo uld be de-
tected in the second dot by the electro meter [4], and no charge otherwi se. Thi s is a
positi ve operato r valued measurement (POVM). Spin Ùlteri ng and also spin-state
m easurements can be achi eved by tunnel ing thro ugh a quantum dot [17].

8 . P r odu ct i on of sp in -en t an gled el ect r on s
for qu an t um com m unicat ion

Two spins (qubi ts) are enta ngled i f thei r wa ve functi on cannot be expressed
as a tensor pro duct of two single-spin wa ve functi ons. Ma ny ta sks in quantum com -
m unica ti on requi re m axim all y enta ngled states of two qubi ts (EPR pai rs) [29] such
as the spin sing let j S i = ( j " # i À j # " i ) =

p

2 . The tri plet j T 0 i = ( j " # i + j # " i ) =
p

2

i s another m axi mall y entangled state, whi le the other two tri pl ets j T Ï i = j " " i ;

j # # i are not enta ngled. The quantum gate m echanism described in Secs. 4 and 5
are one possibi l i ty for pro duci ng such enta ngled states for electro ns (we call in
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general such a devi ce an ent angler , for whi ch several di ˜erent real izati ons are
conceivable). Here we present another m etho d of produci ng enta ngled electrons
m aki ng use of the Andreev tunnel ing at a superconduct or{ norm al interf ace.

Since the Cooper pai rs in conven ti onal s -wa ve superconducto rs (SC) have
sing let spin-wa ve functi ons [30] they can potenti al ly act as a source of spi n-enta n-
gled electrons. In a so-cal led Andreev process [31] two electro ns of opposite spin
tunnel coherentl y from an SC into a norm al region whi le single-parti cle pro cesses
are suppressed. Thi s is not enough for our purp ose, however. In order to be useful
for quantum communi cati on, the two enta ngled electro ns should be separated in
space. It has been proposed to use two quantum dots in the Coul omb bl ockade
[32] between the SC and each of the leads f or achi evi ng thi s goal (see Fi g. 4). The
tunnel ing ampl itudes between SC and dots, and dots and leads, are denoted by T SD

and TDL . A bi as vol ta ge Â ñ = ñ S À ñ l > 0 i s appl ied in order to obta in tra nsport
of enta ngled electro ns from the SC vi a the dots to the leads (ñ S and ñ l = ñ 1 = ñ 2

are the chemical potenti als of the SC and the leads). The chemical potenti als ¯ 1

and ¯ 2 of the two quantum dots can be tuned by externa l gate vo lta ges [32] such
tha t the coherent tunnel ing of two electrons into di ˜erent leads is at resonance.
The resonance for the coherent tunnel ing of two electrons into the sam e lead is
suppressed by the on-site Coulomb repul sion U of a quantum dot.

Fig. 4. Schematic draw ing of the A ndreev entangler. Tw o entangled electrons initial l y

forming a C ooper pair hop with amplitu de T SD f rom two points r 1 , r 2 of the supercon-

ductor, SC (distance £r ), to two dots D by means of the A ndreev tunneli ng.

T he dots are coupled to normal leads L w ith tunneling amplitud e T . I n order to

maximize the e£ciency of the device, w e require asymmetric barriers, T = T .

T he chemical potentials of the SC and leads are denoted ñ and ñ .

W e work at the resonances ¯ 1 = ¯ 2 = ñ S since then the to ta l current and
the desired suppression for tunnel ing into the sam e lead is maxi mi zed. In addi ti on,
in thi s way one can achieve the injecti on of the two electro ns into separate leads
at the sam e orbi ta l energy | thi s turns out to be cruci al f or the detecti on of
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enta nglement whi ch is pro posed in Sec. 10. It is m ost e£ cient to work in the
regim e where the dot levels ¯ n have vani shing occupati on pro babi l ity . For thi s
purp ose we requi re tha t the quantum dot{ lead coupl ing is much stronger tha n the
SC{ quantum dot coupl ing, i .e. j T SD j § j T DL j , so tha t electrons whi ch enter the
quantum dots from the SC wi l l leave the quantum dots to the leads much faster
tha n new electrons can be pro vi ded from the SC. The stati onary occupati on due
to the coupl ing to the leads is indeed exponenti al ly smal l i f Â ñ > k B T , T being
the tem perature and k B the Bol tzm ann constant. In thi s asymm etri c barri er case,
the resonant dot levels ¯ n can be occupi ed only duri ng a vi rtua l pro cess.

In order to exclude spi n-Ûip pro cesses, we requi re tha t the numb er of elec-
tro ns on each dot m ust be even, N D = even, wi th to tal spin zero in the ground
state. Even wi th N D = even, there could be spin-Ûip pro cesses whi ch result in
an exci ted state on the dot. However, tho se pro cesses are stro ngly suppressed i f
£ ¯ > k B T and £¯ > Â ñ , where £ ¯ i s the level spacing of the dot. Ano ther m echa-
ni sm for the loss of enta nglement is given by electro n{ hole exci ta ti ons in the leads
duri ng the resonant tunnel ing events. Again, thi s pro cess is suppressed i f the res-
onance wi dth Ûl = 2 ¤ ¡ l j T DL j

2 i s smal ler tha n Â ñ (f or ¯ n ' ñ S ), where ¡ l i s the
density of sta tes per spin of the leads at the chemical potenti al ñ l .

A further energy scale whi ch enters the considerati on is the superconducti ng
energy gap Â . The ti me delay between subsequent coherent Andreev tunnel ing
events of the two electro ns of a Cooper pai r is determ ined by Â À 1 . In order to
exclude sing le-electron tunnel ing where the creati on of a quasiparti cle in the SC
is a Ùnal exci ted state we requi re tha t Â ƒ Â ñ and Â ƒ k B T . Summ arizi ng al l
above inequal i ti es,we can specify the fol lowi ng regim eof interest for entanglement
pro ducti on [7]:

Â ; U; £¯ > Â ñ > Ûl ; k B T and Ûl > ÛS : (10)

In the regim e speciÙed by Eq. (10), we have calcul ated and com pared the
stati onary charge current of two enta ngled electrons for two com peti ng tra nsport
channels, Ùrst for the desired tra nsport of the two enta ngled electrons each into
di ˜erent leads (current I 1 ) and second f or the unwa nted tra nsport of both electrons
into the same lead (current I 2 ). W e have calcul ated the currents I 1 , I 2 by m aki ng
use of a T -m atri x appro ach whi ch is wel l adapted for describi ng Brei t{ W igner
resonances. The Ùnal resul t for the rati o of the two currents is [7]:

I 1

I 2

=
2 E

2

Û2

ç
sin( k F £ r )

k F £ r

Ñ
2

eÀ 2 £r =¤ ¿ ;
1

E

=
1

¤ Â
+

1

U
; (11)

where Û = Û1 + Û2 . The current I 1 becom es exponenti al ly suppressed wi th increasing
di stance £ r = j r 1 À r 2 j between the tunnel ing points on the SC, the scale given by
the superconducti ng coherence length ¿. Thi s does not pose severe restri cti ons for
a conv enti onal s-wa ve m ateri a l wi th ¿ typi cally being on the order of ñ m. In the
im porta nt case 0 ç £ r ¿ ¿ the suppression is only polyno m ia l / 1 =( k F £ r ) 2 , wi th
k F being the Fermi wa ve vecto r in the SC. On the other hand, we see tha t the



Quant um Inf ormat ion Pro cessing Using Elect ron Spins . . . 123

e˜ect of the quantum dots consists in the suppressi on factor ( Û= E ) 2 f or tunnel ing
into the sam e lead. Thus, in addi ti on to Eq. (10) we have to im pose the condi ti on
k F £ r < E =Û , whi ch can be sati sÙedfor smal l dots wi th E =Û ¤ 1 0 0 and k F ¤ 1 ¡A. W e
wo uld l ike to stress tha t the suppression (ra ther tha n only the absolute current)
is m axi m ized by worki ng around the resonance ¯ n ' ñ S = 0 . W e rem ark tha t
incoherent tra nsport (sequenti al tunnel ing) is negl igible as long as the scatteri ng
rate À ' i s m uch smal ler tha n Ûl since ( I seq = I c oh ) ' ( À ' =Ûl ) [33].

9 . En t an gled elect r ons in a Fer m i sea

W e now analyze the e˜ect of intera cti on on enta nglement [6, 8]. Enta ngled
electrons whi ch are tra nsported in a conducto r always intera ct wi th al l other elec-
tro ns in the conducto r. SpeciÙcal ly, when we add an electro n in state q to a Fermi
sea (l ead), the quasiparti cle weight of tha t state wi l l be renorm al ized by 0 ç z q ç 1

(see below), i.e. some weight 1 À z q to Ùnd the electro n in the ori ginal state q wi ll be
di stri buted among al l the other electrons [6, 8]. Thi s rearrangement of the Fermi
system due to the Coul omb intera cti on happens very qui ckly, on a ti m e scale given
by the inv erse plasmon frequency. W e are now interested in quanti fyi ng thi s renor-
m al izati on. Mo re precisely, when a tri plet/ sing let electro n pai r (t and s for short)
is inj ected from an enta ngler into two leads 1 and 2, we obta in the state

j ê
t = s
nn nn 0 i =

1
p

2
( a

y

nn "
a

y

nn 0
#

Ï a
y

nn #
a

y

"
) j ê 0 i ; (12)

wi th the Ùlled Ferm i sea j ê 0 i , = ( ; l ) , the m omentum of an electro n, and l the
lead num ber. The operator a y

¥
creates an electron in state wi th spin ¥ . The prop-

agati on of the tri plet or singlet, intera cti ng wi th al l other electrons in the Ferm i sea,
can be described by the 2-parti cl e Green functi on G t = s (12 ; 34 ; t ) = h ê

t = s

12 ; t j ê
t = s

34 i .
If a tri plet (si ng let) is prepared at t = 0 , the probabi l i t y for retri eving the same
tri plet (sing let) af ter ti m e t is found to be P (t ) = j G t = s( 12 ; 12 ; t ) j

2 . Assum ing suf-
Ùcientl y separated leads wi th negl igible mutua l intera cti on, we obta in [6, 8] P = z 4

F

for ti m es much smaller tha n the quasiparti cle l i feti me (but larger tha n the inverse
pl asma frequency). For a spin- independent Ham i l to nian wi th bare Co ulomb inter-
acti on only and wi thi n random phase appro xi m atio n (R PA) [34], the quasiparti cle
wei ght for a 2D EG is given by [6, 8] z F = 1 À r s (1 =2 + 1 =¤ ) , in leading order
of the intera cti on parameter r s = 1 =k F a B , where a B = ¯ 0 ñh

2
=me 2 i s the Bohr

radi us and k F the Ferm i wa ve vecto r. In a typi cal GaAs 2D EG we have a B =

1 0 : 3 nm and r s = 0 : 6 1 4 , and thus we obta in zF = 0 : 6 6 5 , theref ore the probabi l i ty
for recoveri ng an injected sing let wi l l only be around P ¤ 0 : 2 . Ho wever, for large
electron density (leading to smal l r s ), P wi l l be cl oser to uni ty and some useful
am ount of enta nglement can be preserved. Thi s holds pro vi ded the spin-scatteri ng
e˜ects are smal l , whi ch is supp orted by exp erimenta l results where the electron
spi n has been tra nsp orted phase-coherentl y over distances of up to 100 ñ m [10].
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10. No ise of ent an gled elect r ons

A stream of bosons exhi bi ts \ bunchi ng" behavi or in the correl ati ons be-
tween parti cles (\ no ise") [35, 36]. Recently, the opposite behavi or for ferm ions,
\ anti bunching " , was exp ected theo reti cal ly [37{ 39] and found exp erimenta l ly [40],
in parti cul ar for electrons. As pointed out recentl y [6] the noise of electrons in
current- carryi ng wi res is sensiti ve only to the sym metry of the orbi tal part o f i ts
wa ve functi on, at least i f no spin-scatteri ng pro cesses are present. Thus, i f we
now consider a two -electro n state, we expect anti bunc hing f or the tri plet sta tes,
since they have an anti symm etri c orbi ta l wave functi on, whereas the orbi ta l wa ve
functi on associated wi th the spin singlet sta te is sym metri c, and so we exp ect
bunchi ng. Thi s leads to an observabl e decrease or increase in noise for electrons,
depending on thei r com mon spin state, as we shal l di scuss next [8].

W e assume tha t an enta ngler generates pai rs of enta ngled electro ns whi ch
are then inj ected into lead 1 and 2, one electron each, as shown in Fi g. 5. A beam
spl itter is inserted in order to create two -particl e interf erence e˜ects in the sense
tha t there is an equal pro babi li ty ampl itude for incoming electro ns (f rom lead 1
or 2) to leave into lead 3 or 4. The quanti t y of interest is then the noise, i.e. the
current{ current correl ati ons, m easured in leads 3 and/ or 4 .

Fig. 5. Setup for measuring noise of entangled electrons. T he entangler may take un-

correlated electrons from the Fermi leads 1 0 and 2 0 (this is not required for the A ndreev

entangler). Pairs of entangled electrons (singlet or triplet) are pro duced in the entangler

and then inj ected into the leads 1 and 2, one electron per lead. T he current of these tw o

leads are then mixed with a beam splitter (to induce scattering interf erence) and the

resulting noise is then measured in lead 3 and 4 : no noise (antibunching) for triplets,

w hereas w e obtain enhanced noise (bunching) for singlets .

The probabi l i ty of recoveri ng a singlet or tri pl et after inj ecting i t into an
intera cti ng Fermi sea is reduced by a f actor of P = z 4 , whi ch depends on the
carri er density . Except for thi s renorm al izati on, the entanglement of the sing let or
tri plet is not a˜ected by the intera cti ng electro ns in the Ùlled Ferm i sea. If P = z 4 i s
cl oseto one we can now calcul ate tra nsport quanti ti esusi ng the standard scatteri ng
theo ry f or non- intera cti ng quasiparti cl es in a Ferm i l iqui d [37]. We consider the
enta ngled inci dent states ê 12 wi th one electron per lead and the quantum
num bers = ( " ; n ), where " i s the electron energy. Consideri ng a m ul titerm inal
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conducto r wi th density of sta tes ¡ , we assume tha t the leads consist of only one
quantum channel ; the general izati on to more channel s is stra ightf orward.

For the spectra l densiti es of the Ûuctua ti ons between the leads ˜ and Ù , we
obta in £ I ˜ = I ˜ À h I ˜ i in the absence of backscatteri ng and at zero f requency [8],
S ˜ Ù ( ! ) = l imT ! 1 ( h¡ =T )

R
T

0
d tei ! t RehÏj £ I ˜ ( t ) £ I Ù (0 ) j Ïi ,

S 3 3 = S 4 4 = À S 3 4 = 2
e2

h¡
T (1 À T ) (1 ´ £" 1 " 2

) : (13)

Here, the minus (pl us) sign refers to the spin tri plet (sing let) and T is the tra ns-
m ission coe£ cient of the beam spli tter. If two electrons wi th the same energies,
" 1 = " 2 , in the sing let sta te are injected into the leads 1 and 2 , the shot noise
is enhanced by a factor of two com pared to the value for uncorrel ated parti -
cl es[37, 41], 2 e 2 T (1 À T ) =h¡ . Thi s am pl iÙcati on of the noise ari sesfrom bunchi ng of
the electro ns due to thei r sym m etri c orbi ta l wa ve functi on, such tha t the electrons
pref erabl y appear in the sam e outg oing leads. If the electron pai rs are injected
as a tri plet, an ant ibunchi ng e˜ect appears, compl etely suppressi ng the noise, i .e.
S ( ! = 0 ) = 0 . W e stress tha t the sign of cro ss-correl ati ons does not carry any
signature of stati sti cs, e.g. here the di ˜erent signs of S 3 4 and S 3 3 = S 4 4 [Eq. (13)]
m erely reÛect current conservati on and absence of backscatteri ng. Since bunchi ng
app ears onl y for a state wi th a symm etri c orbi ta l wa ve functi on, whi ch cannot
occur f or unenta ngled states, m easuri ng noise enhancement in the outg oing arm s
of the beam spli tter pro vi des uni que evidence for enta nglement [8 ]. A cruci al re-
qui rem ent is " 1 = " 2 , whi ch can be sati sÙed for Ùnite-size system s of length L

(i ncl udi ng the beam spli tter), wi th di screte spectrum " such tha t Â " > k B T > Û

or L < ñhv F =k B T ¤ 2 ñ m at 1 K. Here, Û i s the level wi dth of " caused by the
coupl ing to the current reservo irs. Furtherm ore, inelasti c scatteri ng should be neg-
l igible since it can lead to a vi olati on of the condi ti on " 1 = " 2 by changing the
energy of one of the parti cles. Theref ore one has to work at low tem peratures
where ‘ ine la stic > L .
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