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We review the theoretical proposal for quantum computing with elec-
tron spins in quantum confined structures and discuss the essential require-
ments for its implementation. The quantum bit is represented by the spin
of the electron, as opposed to the charge (orbital) degrees of freedom. In
this context, we analyze a number of physical realizations of the elemen-
tary building blocks for quantum computation: a universal set of quantum
gates, state preparation and measurement. Finally, we discuss the produc-
tion, transport, and detection of electronic Einstein—Podolski—-Rosen pairs,
which are an important resource for quantum communication.

PACS numbers: 03.67.Lx, 03.67.—a, 72.25.Rb

1. Introduction

Computers which operate with quantum states instead of conventional clas-
sical information would be capable of efficiently solving some problems for which
no efficient classical algorithm is known [1]. In analogy to the smallest unit of
information in classical computation, the bit, the memory of a quantum computer
can be represented as a collection of quantum two-level systems, named quantum
bits, or qubits. At present, there is no working (full-scale) quantum computer, the
reason being that a suitable physical realization of qubits is quite hard to find. This
is so because the requirements [2] for the implementation of qubits are extremely
demanding: Quantum phase coherence needs to be maintained over a long time
compared to the length of an elementary step in the computation, in order to allow
for quantum error correction. Another requirement is that it should be possible
to couple pairs of qubits in a controlled manner in order to carry out elementary
quantum logic. In addition to these operations on pairs of qubits, operations on
single qubits need to be implemented. It is also required that at the end of a
computation, the qubits can be read out by performing a quantum measurement
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separately on each qubit. And finally, the design of the quantum computer should
be scalable to a large number of qubits.

Systems involving trapped atoms, cavity QED, or nuclear magnetic reso-
nance (see Ref. [3] for an overview over existing experimental proposals) seem to
satisfy all but the scaling requirement from above, and small-scale quantum gate
operations with these systems have indeed been demonstrated in experiment. In
contrast to the above proposals, it can be speculated that there is a good chance
for a solid-state qubit to be scaled up using semiconductor nanotechnology, in a
similar manner as for conventional integrated circuits. Several solid-state imple-
mentations for quantum computing have been proposed [3]. In this paper, we focus
on the idea of using electron spins in coupled semiconductor quantum dots as the
qubits of a quantum computer [4], and give an overview of the theoretical work
which was carried out in this area (see Fig. 1 for a schematic view of the device
under study). Obviously, the spin of the electron is a natural candidate for the
quantum bit (qubit) — every spin 1/2 represents precisely one qubit (we identify
| 1) = |0) and | |) = |1)). Treating the spin-orbit interaction and the coupling
to the environment as small perturbations this implies that one possible source

N
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Fig. 1. Array of quantum dots (QDs), indicated by circles, which can be controlled
by electrical gating. The electrodes (dark gray) define the confinement potential for the
electrons. By changing the gate voltages, electrons can be moved into the magnetized or
high-g layer, allowing for spatially varying Zeeman splittings. Local magnetic fields can
also be achieved by a current-carrying wire (indicated on the left of the QD array). Now
the electron spin in each QD can be addressed individually, e.g. through ESR pulses of an
additional in-plane magnetic ac field, because every QD is subject to a distinct Zeeman
splitting. This mechanism can be used for single-spin rotations and the initialization
step. Changing the exchange coupling J between the QDs can be done by lowering the
tunnel barrier between the dots (the two rightmost QDs are drawn schematically as

tunnel-coupled).
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of errors in quantum computation, namely the leakage into logically “undefined”
parts of the Hilbert space, has already been avoided.

The motivation for doing quantum computing comes from its potential to
outperform classical computers [1]. This is possible through quantum algorithms
which make use of the quantum memory’s ability to exist in quantum superposi-
tions and to undergo a unitary time evolution U|Wi,) = |Wout), where ¥, ) denotes
the “input” state which is prepared before the computation starts and |[Foy) is
the final state, which is subsequently measured in order to obtain the result of the
computation. A very useful fact is that all possible quantum algorithms can be im-
plemented by concatenating one- and two-qubit gates [5], therefore it is sufficient
when we discuss these two types of operations below.

In addition to satisfying all requirements necessary for a scalable quantum
computer, a spin-qubit, being attached to a mobile electron, can be transported
along conducting wires [6]. An interesting application of this possibility appears to
be the creation (say, in coupled quantum dots or near a superconductor-normal in-
terface [7]) and transport of spin-entangled electrons which act as Einstein—Podol-
sky-Rosen (EPR) pairs. Such EPR pairs represent one of the fundamental re-
sources for quantum communication [1]. We include a discussion of the use of
electronic EPR pairs for quantum communication in this article and show that
such EPR pairs can be transported and detected in transport and noise measure-
ments in electronic nanostructures [8]. Entangled pairs of particles have already
been produced and used for various tasks in quantum communication in several
experiments in quantum optics (see e.g. Ref. [9]). For many applications, a disad-
vantage of the sources which are presently used there (parametric downconversion)
is that entangled particles can only be produced in a stochastic manner and at
a very low rate. Thus there is a great demand for deterministic and fast sources
of EPR pairs. One candidate system for a source of entangled (localized or delo-
calized) spin qubits would be coupled quantum dots [6, 4]. A second possibility is
the use of s-wave superconductor-normal junctions as a source of spin-entangled
electrons, exploiting the fact that the Cooper pairs are in a singlet (and therefore
entangled) state [6, 7].

2. Coherence

At first sight, arbitrary quantum two-level systems could serve as qubits.
However, in all practical cases, quantum systems are never completely isolated
from their environment. The unavoidable coupling to the environment is the ori-
gin of decoherence which creates errors in a quantum computation. If these errors
are rare enough, they can be corrected using quantum error correction [1]. There-
fore, only systems with slow decoherence are interesting for quantum computa-
tion. Tt is important to distinguish the relaxation time 7} and the (transverse)
decoherence time T5. The latter is usually shorter, and therefore more relevant
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for quantum computing. If the spin—orbit coupling is weak then the spin coher-
ence time — the time over which the phase of a superposition of spin-up and
spin-down states is well defined — can be completely different from the charge
coherence time (as determined e.g. from measurements of the weak localization or
the Aharonov-Bohm effect), and in fact it is known from magneto-optical experi-
ments in bulk n-doped GaAs and in CdSe quantum dots that they can be orders
of magnitude longer [10, 11]. These findings motivate the use of the spin as the
qubit in these structures rather than charge [4].

We have proposed to measure 75 of a single spin in such a device directly via
a transport experiment by applying electron spin resonance (ESR) techniques [12].
The 1dea is to extract the decoherence time 75 by probing the sequential tunneling
current through the quantum dot which is attached to two leads in the presence of
an applied ESR field. We assume a situation in which the Zeeman splitting in the
leads is negligible, but on the dot we have gugB > Ap and gu B > k7. This
can be achieved e.g. by using materials with different g-factors for the dot and the
leads. Then, the stationary master equation for the reduced density matrix of the
quantum dot in the basis | ), | 1}, |S) = (| 1) = | [1))/v2 (with corresponding
energies 0 = E} < E| < Eg) is derived. We can assume that the triplet is higher in
energy and does not contribute to the sequential tunneling current. In the regime
Es > p1 > Eg — gupB > po the current is blocked in the absence of the ESR
field due to spin conservation. Only in the presence of the ESR field there can be
a sequential tunneling current; after some calculation we find for the stationary
current [12]

Vi
(W - gﬂBB)z + VlzT ’

I(w) o (D)
where the width of the resonance at w = gupB is given by the total spin de-
coherence rate Vi; = (Wsy + Wgy)/2 4+ 1/T5. Here, Ws, denotes the rate for
the transition from the state |o) = | 1),| |) to the singlet |S) due to the tunnel
coupling to the leads. Therefore, the inverse of the observed line width 1/V; rep-
resents a lower bound for the intrinsic single-spin decoherence time 75. For finite
temperatures, in the linear response regime Ap < k7' the current has roughly
the standard sequential tunneling peak shape cosh™?[(Es — E| — 11)/2kpT] where
= (p1 + p2)/2, while the width of the resonance given in Eq. (1) remains unaf-
fected.

Although theory can only give us some ideas about the mechanisms for de-
coherence rather than reliable quantitative predictions of the decoherence times,
we report here on recent calculations identifying the dominant spin—orbit effects
in GaAs quantum dots leading to unusually low phonon-assisted spin-flip rates,
which suggest long spin-decoherence times. In Ref. [13] the spin-flip processes
which accompany phonon-assisted transitions between different discrete energy
levels (or Zeeman sublevels) in GaAs electron quantum dots were studied within
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a one-electron Hamiltonian derived from the Kane model. Several different mech-
anisms originating from spin—orbit coupling are shown to be responsible for such
processes and the rates I' = Tfl for all mechanisms are evaluated in the presence
or absence of a magnetic field. It turns out that the most effective spin-flip mech-
anisms in the 2D case are related to the broken inversion symmetry, either in the
elementary crystal cell or at the heterointerface. The spin relaxation of 2D elec-
trons localized in quantum dots is much smaller than that of delocalized electrons
because the contribution of lowest order in the spin—orbit coupling constant 8 van-
ishes due to the boundedness of the wave function. Therefore, the contributions to
the spin-flip rate proportional to 32 are either absent or suppressed by additional
small parameters (e.g. related to the size quantization in the z direction). A finite
Zeeman splitting also leads to contributions oc 52,

r~ro2E (g“BB)Z, (2)

h(.do h(.do

where hwyg is the distance between the orbital levels in the dot, I'y( B) is the inelastic
rate without a spin flip. Spin-flip transitions between the Zeeman sublevels (with
energy spacing smaller than fhwg) occur at a rate which is at low temperature
proportional to the fifth power of the Zeeman splitting,

_ (gusB)®
I ~ oy (3)
where A, oc 3% characterizes the strength of the effective spin-piezo-phonon cou-
pling in the heterostructure and ranges from a2 7 x 1073 to & 6 x 1072 depending
on 3 (eg. I' & 1.5 x 103 s7! for hwy = 10 K and B = 1 T). It is also shown
that two-phonon contributions to the spin-flip transitions between the Zeeman
sublevels are irrelevant at temperatures kg7 < hwg.

3. Initialization

Before a typical quantum computation is started, initialized qubits are re-
quired, i.e. qubits in a well defined state such as spin up, | T) = |0). This can
be done by exposing all spins in the quantum register to a large magnetic field
gpus B > kT and allowing them to relax to the ground state. This completely po-
larized state corresponds to the logical state [0000...) in which all qubits are set to
zero. The required magnetic field can be applied locally or realized by forcing the
electrons (via external gates) into a magnetized layer/dot, into a layer with a differ-
ent effective g-factor [4, 6] or with polarized nuclear spins (Overhauser effect) [14]
etc., see also Fig. 1. Polarized electrons can also be injected into an empty quan-
tum dot if a spin-polarized current can be produced, such as by spin-polarizing
materials [15, 16] or by spin-filtering with the help of another dot [17]. Starting
from the completely polarized state |0000...), one can create arbitrary (product)
input states by applying the single-spin rotations described in Sec. 6.
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4. Laterally coupled quantum dots

In coupled quantum dots, there is a mechanism which allows for the con-
trolled interaction of two spin-qubits, resulting from the combined action of the
Coulomb interaction and the Pauli exclusion principle. The ground state of two
coupled electrons in the absence of a magnetic field is a spin singlet, while the
first excited state in the presence of sufficiently strong Coulomb repulsion is a spin
triplet. Further excited states are separated from these two lowest states by an
energy gap, given either by the Coulomb repulsion or the single-particle confine-
ment. Thus, the low-energy dynamics of the two excess electrons in tunnel-coupled
quantum dots can be described by the effective Heisenberg spin Hamiltonian

Hs(t) = J()S1 - Sa. (4)
Here, J(t) denotes the exchange coupling between the two spins S; and S2 which
is given by the separation in energy between the triplet and the singlet. Assum-
ing that J is zero (“switched off”) except for a short duration 7, (“pulse”) with
the restriction [;*dtJ(t)/h = Jors/h = 7 (mod 27), we obtain a time evolution
U(t) = Texp(i fot Hs(7m)dr/h) which corresponds to the “swap” gate Usy, inter-
changing the states of qubit 1 and 2. Swapping qubits is not sufficient for quantum
computation; however, the so-called square-root-of-swap Uslvéz, obtained under the
condition

oJ@)  Jors _ow

turns out to be a wniversal quantum gate when combined with single-qubits
rotations (see Sec. 6), i.e. arbitrary quantum evolutions (algorithms) can be con-

structed from these elements. The universality of Uslvéz is proven by constructing
the known universal gate XOR, [18], through combination of Uslvéz and single-qubit

operations exp (iwS7 /2), applied in the sequence [4] Uxor = l(T/2)5T o=i(/2)53

X Uslvéze ! slvéz. Thus, the study of general quantum computation can be re-
duced to the study of single-spin rotations and the exchange mechanism, 1.e. how
J(t) can be controlled experimentally. The following investigation of the exchange
mechanism is based on the idea to change J(t) can be “switched off” and “switched
on” by raising or lowering the tunneling barrier between the dots. In addition to
the barrier, there are other external parameters which can be used to control the
exchange coupling J(t).

We consider first a system of two coupled quantum dots in a two-dimensional
electron gas (2DEG), containing one (excess) electron each. The arrangement of
the dots is as depicted in Fig. 1, and we require that the distance 2a between the
dots is sufficiently small, allowing the electrons to tunnel between the dots (for a
lowered barrier). The model Hamiltonian for this system is

H:Zhi+C+HZ:Horb+HZa (6)

i=1,2
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where the single-electron dynamics in the 2DEG (xzy-plane) is described through

2

hi= 5 [p— SAG)] V), (™)
with m being the effective mass and V(r;) the confinement potential as given
below. A magnetic field B = (0,0, B) is applied along the z-axis, which couples to
the electron spin through the Zeeman interaction Hyz and to the charge through
the vector potential A(r) = %(—y, 2,0). The screening length A in almost depleted
regions (like few-electron quantum dots) can be expected to be much larger than
the screening length in bulk 2DEG regions (where it is 40 nm for GaAs). For
small quantum dots, say A > 2a & 40 nm, we therefore have to consider the
unscreened Coulomb interaction C' = €2 /k|r; — 75|, where & is the static dielectric
constant. The confinement and tunnel-coupling in Eq. (7) for laterally aligned dots
1s modeled by the quartic potential

2 4a?
with the inter-dot distance 2a and ap = \/h/mwy the effective Bohr radius of

the dot. Thus, at large separation a > ap the dots are modeled as two harmonic

mw [ 1 (2

V(z,y) = w?—a?) 4yt (8)

wells with frequency wg. This is justified by the experimental evidence that the
low-energy spectrum of single dots is well described by a parabolic confinement
potential [19].

We consider only the two lowest orbital eigenstates of Hyp, leaving us with
one symmetric (spin-singlet) and one antisymmetric (spin-triplet) orbital state.
The spin state for the singlet is |S) = (] T1) — | [1))/v/2, while the triplet spin
states are |To) = (| T1Y 4+ 1T)/V2, |T4) = 11), and |T-) = | | |). At sufficiently
low temperatures k7T < hwg, higher lying states are frozen out and H,., can be
replaced by the spin Hamiltonian, Eq. (4), and the exchange energy J = ¢; — ¢4 is
given as the difference between the triplet and singlet energy. For the calculation
of these energies, the analogy between atoms and quantum dots can be used. Using
the Heitler-London ansatz from molecular physics (with ground-state single-dot
orbitals) we obtain [14]:

h(.do 3 2
J= b 2T {E (14 bd?)
ev/b [0 1o (b?) — OO T (20— 1/0) |} 9)

where d = a/ap is the dimensionless distance between the dots, b = B/By =
V1+wi/w? the magnetic compression factor, wy, = eB/2me the Larmor fre-
quency, and I denotes the zeroth-order Bessel function. The first term in Eq. (9)
originates from the confinement potential, while the terms proportional to the pa-
rameter ¢ = \/7/2(e?/kap)/hwo come from the Coulomb interaction C'. The term
with the leading minus sign is the exchange term. We are mainly interested in the
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Fig. 2. Exchange coupling J (full line) for quantum dots in a GaAs structure with
confinement energy fiw = 3 meV and ¢ = 2.42. We plot the conventional short-range
Hubbard result J = 4¢*/U (dashed-dotted line) and the extended Hubbard result [14]
J = 4¢*/U + V (dashed line) for comparison. In (a), we plot J as a function of the
magnetic field B at fixed inter-dot distance d = a/as = 0.7, while in (b) we vary the
inter-dot distance d = a/ap at zero field (B =0).

weak coupling limit |J/hwo| < 1, where the ground-state Heitler-London ansatz
is self-consistent. We refer to Fig. 2 for a plot of J as given in Eq. (9) as a function
of B and d. Note that J(B = 0) > 0, i.e. the singlet is the ground state, which
is generally true for a two-particle system with time-reversal invariance. Over a
wide range of the parameters ¢ and a, it can be observed that the sign of J(B)
changes from positive to negative at a finite value of B (for the parameters chosen
in Fig. 2a at B ~ 1.3 T). Furthermore, J is suppressed exponentially either by
compression of the electron orbitals through large magnetic fields (b >> 1), or by
large distances between the dots (d > 1), where in both cases the orbital overlap
of the two dots is reduced. This exponential suppression, contained in the 1/sinh
prefactor in Eq. (9), is partly compensated by the exponentially growing exchange
term o< exp[2d?(b — 1/b)]. Altogether, J decays exponentially as exp(—2d2b) for
large b or d. Since the sign reversal of J at the point of a singlet—triplet crossing
results from the long-range Coulomb interaction, it is not contained in the stan-
dard Hubbard model which takes only short-range interaction into account. The
latter predicts J = 4¢2/U > 0 in the limit t/U < 1 (see Fig. 2). Further refine-
ment of the Heitler-London result Eq. (9) was achieved by taking higher levels
and double occupancy of the dots into account (implemented in a Hund-Mullikan
approach), which leads to qualitatively similar results [14], in particular concerning
the singlet—triplet crossing. Numerical calculations which take more single-particle
levels into account [20] have confirmed the results presented here.

5. Vertically coupled quantum dots

Vertically tunnel-coupled quantum dots have been produced in multilayer
self-assembled quantum dots (SAD) [21] as well as in etched mesa heterostruc-
tures [22]. In order to investigate quantum gate operations in these structures we
apply the same methods as described in the previous section for laterally coupled
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Fig. 3. (a) Schematic drawing of two vertically coupled quantum dots having different
lateral radii a4+ and agp—. Magnetic and electric fields can be applied either in-plane
(B|, E)) or perpendicularly (Bi, E1). (b) Quartic double-well potential used for
modeling the vertical confinement Vi. (c) Mechanism for switching of the spin—spin
coupling between dots of different size by means of an in-plane electric field £ at
B = 0. The parameters for this plot are hw. = 7 meV, d = 1, aot = ap/apy = 1/2
and ao— = af/ah_ = 1/4. Therefore, By = hw:/eas = 0.56 mV/nm and A =
(ag+ — ag_)/208+ ai_ = 6. The exchange coupling J decreases exponentially on the
scale FEo/2A = 47 mV /um for the electric field. The exchange coupling is switched “on”
for I/ = 0 and “off” for £} =~ 150 mV /um.

dots, but now we extend the Hamiltonian Eq. (7) from two to three dimensions and
use a three-dimensional confinement potential V' = V; 4 V5 [23]. We implement the
vertical confinement V, as a quartic potential similar to Eq. (8), with curvature
w, at z = £a (see Fig. 3b), implying an effective Bohr radius ag = \/A/mw, and
a dimensionless distance d = a/ap. We have modeled a harmonic potential for
the lateral confinement, while we have allowed for different sizes of the two dots
ap+ = \/h/magrw,. This results in additional switching mechanisms as explained
in the next paragraph.
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The three-dimensional setup which we are considering implies that the ex-
change interaction is not only sensitive to the magnitude of the applied fields,
but also to their direction. We now give a brief overview of our results [23] for
in-plane (B, ) and perpendicular (B, ) fields; this setup is illustrated in
Fig. 3a: (1) In-plane magnetic fields B suppress J exponentially; perpendicular
fields in laterally coupled dots have the same effect. (2) Perpendicular magnetic
fields By reduce the exchange coupling between identically sized dots agy = ap—
only slightly. However, if the two dots have different sizes, a4+ < ap—, the behavior
of J(B1) is no longer monotonic: Increasing B, from zero amplifies the exchange
coupling J until both electronic orbitals are magnetically compressed to approx-
imately the same size, i.e. B & 2mapiw,c/e. From this point on, J decreases
weakly, as for identically sized dots. (3) Perpendicular electric fields £ detune
the single-dot levels, and thus reduce the exchange coupling; the same result was
obtained for laterally coupled dots and in-plane electric fields [14]. (4) In-plane
electric fields E) and different dot sizes provide another switching mechanism
for J. The dots are shifted parallel to the field by Azy = E”/Eooz%i, where
Ey = hw, /eap. Thus, the larger dot is shifted a greater distance Az_ > Az and
so the mean distance between the electrons grows as d’ = \/d2 + AQ(E”/EO)2 > d,
taking A = (o, — od_)/203,a3_. Since the exchange coupling J is exponen-

tially sensitive to the inter-dot distance d’, it is suppressed exponentially when an
in-plane electric field is applied, J & exp[—2A%(E)/E)?], which is illustrated in
Fig. 3c. We have thus described an alternative to the switching mechanisms involv-
ing a magnetic field, namely an exponential switching mechanism for a quantum
gate relying only on a tunable electric field.

6. Single-spin rotations

In addition to at least one (non-trivial) two-qubit gate (e.g. XOR or square-
-root-of-swap), it is required for quantum computation to perform one-qubit oper-
ations, which in the context of spin physics are equivalent to single-spin rotations.
This amounts to exposing any specific qubit to a time-varying Zeeman coupling
(¢upS - B)(t) [14], which is controlled through the magnetic field B and/or the
g-factor ¢g. Since only relative rotations are relevant, it is sufficient to rotate all
spins of the system simultaneously (e.g. by an external field B). Relative rotations
are then achieved by changing the Larmor frequency of individual spins.

Magnetic fields which vary strongly on the length scale given by the inter-dot
distance can be generated using various techniques, e.g. with the magnetic tip of
a scanning force microscope, a magnetic disk writing head, by placing the dots
above a grid of current-carrying wires, or by placing a small wire coil above the
dot. Alternatively one can use ESR techniques [14] to perform single-spin rotations,
e.g. if a certain qubit has to be flipped (say from | 1) to | |)) one applies an ac
magnetic field perpendicular to the {-axis which matches the Larmor frequency of
that particular electron.
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The examples described in the following show that for both single-spin and
two-spin operations, the control over the spin can be achieved through charge (i.e.
orbital wave function) manipulation [4]. The coupling of the qubit-spins to a layer
of material with a higher (or lower) g-factor can be achieved by changing the equi-
librium position of the electron by electrical gating [6, 24] (cf. Fig. 1). If the electron
wave function is pushed into a region with a different (effective) g-factor, a relative
rotation around the direction of B by an angle of ¢ = (¢’ B’ — gB)up7/2h is pro-
duced. In bulk semiconductors the free-electron value of the g-factor go = 2.0023
is modified by spin—orbit coupling. Similarly, the g-factor can be drastically en-
hanced by doping the semiconductor with magnetic impurities [15, 16]. In confined
structures such as quantum wells, wires, and dots, the g-factor is further modified
and becomes sensitive to an external bias voltage [25]. Numerical analysis of a
system with a layered structure (AlGaAs-GaAs-InAlGaAs-AlGaAs) has shown
that by shifting an electron from one layer to another by electrical gating [26] the
effective g-factor can be varied by about [24] Ageg & 1.

Localized magnetic fields appear to be more difficult to implement than
the nearest-neighbor exchange coupling in some cases. In the following, we list
a number of possibilities to use exclusively the exchange mechanism to achieve
both the two-qubit and the single-qubit gates. By means of exchange coupling to
ferromagnetic (FM) dots or to an FM layer (Fig. 1), the coupling of a single spin
S to an ef fective Zeeman field (gup B)(t) can be obtained. Regions (layers) with
increased magnetic field can be provided by an FM material while an effective
magnetic field can be produced e.g. with dynamically polarized nuclear spins (the
Overhauser effect) [14]. Ferromagnetic dots can be made of magnetic metals (e.g.
Co or Dy) or magnetic semiconductors, e.g. Mn-doped GaAs (in this case, exchange
effects are equivalent to an effective g-factor description).

Finally, another possibility for exchange-only quantum computation con-
sists of using an appropriate encoding for the qubits [27]. It turns out that the
Heisenberg interaction Eq. (4) between the spins representing the qubits alone is
sufficient to (exactly) perform any quantum computation if each qubit is encoded
using (at least) three spins (instead of only one). A possible encoding for this is
0r) = |S)| 1), [1L) = /2/3|T3)| 1) — +/1/3|T5)| 1). One-qubit gates on the coded
qubits can now be performed by applying the exchange interaction between the
spins of the code; the Hamiltonian Hy» = J1251 - S2 e.g. generates rotations about
the z-axis for the coded state |¢1,) = «|01) + 3|11). Generally, it can be shown
that any single-qubit rotation in code space can be performed with a sequence
involving at most four steps of applying the exchange H;; between the adjacent
spins ¢ and j in the case where the spins are arranged in a line (i.e. with couplings
Hy5 and Hagz), or three steps if the arrangement is in a “triangle” i.e. Hyg is also
possible. A numerical analysis was performed in order to find the exact number
of computational steps for performing XOR between two coded qubits [27] with
the result that XOR involves 19 sequential applications of a nearest-neighbor ex-
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change interaction. In the case where parallel (simultaneous) exchange couplings
are allowed, we find that 7 or 8 steps are required, depending on the geometry
of the arrangement. These results quantify the expense in number of devices (a
factor of three more) and computational steps (roughly a factor of ten more) if
one wants to use the encoding method described above instead of implementing
the control of local (real of effective) magnetic fields.

7. Single-spin measurement

At the end, the result of a quantum computation has to be read out, i.e.
the state of each qubit (each individual electron spin) needs to be measured, e.g.
in the | 1), | |) basis. The direct detection of the tiny magnetic moment pp of
an individual electron spin is very difficult, but there exist several proposals for
reading out single spins using more realistic methods. One of them is to use the
tunneling of the electron into a supercooled paramagnetic dot [4, 6], thereby in-
ducing a magnetization nucleation from the metastable phase into a ferromagnetic
domain. The domain’s magnetization direction is along the measured spin and can
be detected by conventional methods and provides a 75% reliable result for the
read out of the electron spin.

Another idea is to detect the spin of an electron via measuring charge, i.e.
voltage or current [4]. It is known how to build electrometers with single-charge
detection capabilities; resolutions down to 10~% of one electron charge have been
reported [28]. A straightforward concept yielding a potentially 100% reliable mea-
surement requires a switchable “spin-filter” tunnel barrier which allows only, say,
spin-up but no spin-down electrons to tunnel. When the measurement of a spin
in a quantum dot is to be performed, tunneling between this dot and a second
dot, connected to an electrometer, is switched on, but only spin-up electrons are
allowed to pass (spin-filtering). Thus if the spin had been up, a charge would be de-
tected in the second dot by the electrometer [4], and no charge otherwise. This is a
positive operator valued measurement (POVM). Spin filtering and also spin-state
measurements can be achieved by tunneling through a quantum dot [17].

8. Production of spin-entangled electrons
for quantum communication

Two spins (qubits) are entangled if their wave function cannot be expressed
as a tensor product of two single-spin wave functions. Many tasks in quantum com-
munication require maximally entangled states of two qubits (EPR pairs) [29] such
as the spin singlet |S) = (| 1) — | [1))/v/3. The triplet [To) = (| 1)+ 11))/v/2
is another maximally entangled state, while the other two triplets |T4) = | 11},
| ||} are not entangled. The quantum gate mechanism described in Secs. 4 and 5
are one possibility for producing such entangled states for electrons (we call in
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general such a device an entangler, for which several different realizations are
conceivable). Here we present another method of producing entangled electrons
making use of the Andreev tunneling at a superconductor-normal interface.

Since the Cooper pairs in conventional s-wave superconductors (SC) have
singlet spin-wave functions [30] they can potentially act as a source of spin-entan-
gled electrons. In a so-called Andreev process [31] two electrons of opposite spin
tunnel coherently from an SC into a normal region while single-particle processes
are suppressed. This is not enough for our purpose, however. In order to be useful
for quantum communication, the two entangled electrons should be separated in
space. It has been proposed to use two quantum dots in the Coulomb blockade
[32] between the SC and each of the leads for achieving this goal (see Fig. 4). The
tunneling amplitudes between SC and dots, and dots and leads, are denoted by Tsp
and Tpr,. A bias voltage Ay = pg — 7 > 0 1s applied in order to obtain transport
of entangled electrons from the SC via the dots to the leads (g and g = p1 = po
are the chemical potentials of the SC and the leads). The chemical potentials ¢;
and ez of the two quantum dots can be tuned by external gate voltages [32] such
that the coherent tunneling of two electrons into different leads is at resonance.
The resonance for the coherent tunneling of two electrons into the same lead is
suppressed by the on-site Coulomb repulsion U of a quantum dot.

Fig. 4. Schematic drawing of the Andreev entangler. T'wo entangled electrons initially
forming a Cooper pair hop with amplitude 7sp from two points 71, 72 of the supercon-
ductor, SC (distance 67 = |1 —72|), to two dots D12 by means of the Andreev tunneling.
The dots are coupled to normal leads Li2> with tunneling amplitude Tpr. In order to
maximize the efficiency of the device, we require asymmetric barriers, |Tsp|/|7bL| < 1.

The chemical potentials of the SC and leads are denoted p: and ps.

We work at the resonances €; = €3 = pug since then the total current and
the desired suppression for tunneling into the same lead is maximized. In addition,
in this way one can achieve the injection of the two electrons into separate leads
at the same orbital energy — this turns out to be crucial for the detection of
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entanglement which is proposed in Sec. 10. It is most efficient to work in the
regime where the dot levels ¢, have vanishing occupation probability. For this
purpose we require that the quantum dot-lead coupling is much stronger than the
SC—-quantum dot coupling, i.e. |Tsp| < |TbL|, so that electrons which enter the
quantum dots from the SC will leave the quantum dots to the leads much faster
than new electrons can be provided from the SC. The stationary occupation due
to the coupling to the leads is indeed exponentially small if Ay > kg7, T" being
the temperature and kg the Boltzmann constant. In this asymmetric barrier case,
the resonant dot levels ¢, can be occupied only during a virtual process.

In order to exclude spin-flip processes, we require that the number of elec-
trons on each dot must be even, Np = even, with total spin zero in the ground
state. Even with Np = even, there could be spin-flip processes which result in
an excited state on the dot. However, those processes are strongly suppressed if
de > kpT and ée > Ap, where e is the level spacing of the dot. Another mecha-
nism for the loss of entanglement is given by electron—hole excitations in the leads
during the resonant tunneling events. Again, this process is suppressed if the res-
onance width v; = 271;4|Tpr|? is smaller than Ay (for €, ~ pg), where v; is the
density of states per spin of the leads at the chemical potential y;.

A further energy scale which enters the consideration is the superconducting
energy gap A. The time delay between subsequent coherent Andreev tunneling
events of the two electrons of a Cooper pair is determined by A~!. In order to
exclude single-electron tunneling where the creation of a quasiparticle in the SC
is a final excited state we require that A > Ap and A > k7. Summarizing all
above inequalities, we can specify the following regime of interest for entanglement
production [7]:

AU be > Ap >, ksT and T > s (10)

In the regime specified by Eq. (10), we have calculated and compared the
stationary charge current of two entangled electrons for two competing transport
channels, first for the desired transport of the two entangled electrons each into
differentleads (current I;) and second for the unwanted transport of both electrons
into the same lead (current Iz). We have calculated the currents I, Is by making
use of a T-matrix approach which is well adapted for describing Breit—Wigner
resonances. The final result for the ratio of the two currents is [7]:

L 287 [Sin(kF‘Sr)re—zér/ws 1_1 + 1 (11)

I 2 krér ’ E TA U’
where v = 1 +72. The current I; becomes exponentially suppressed with increasing
distance ér = |r; — 72| between the tunneling points on the SC, the scale given by
the superconducting coherence length &. This does not pose severe restrictions for
a conventional s-wave material with ¢ typically being on the order of gm. In the
important case 0 < ér ~ & the suppression is only polynomial oc 1/(kpér)?, with
kr being the Fermi wave vector in the SC. On the other hand, we see that the
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effect of the quantum dots consists in the suppression factor (y/&)? for tunneling
into the same lead. Thus, in addition to Eq. (10) we have to impose the condition
kpér < £/7, which can be satisfied for small dots with £/y ~ 100 and kr ~ 1 A. We
would like to stress that the suppression (rather than only the absolute current)
is maximized by working around the resonance €, ~ pug = 0. We remark that
incoherent transport (sequential tunneling) is negligible as long as the scattering
rate I, is much smaller than v since (Lieq/Ieon) = (I'p/71) [33].

9. Entangled electrons in a Fermi sea

We now analyze the effect of interaction on entanglement [6, 8]. Entangled
electrons which are transported in a conductor always interact with all other elec-
trons in the conductor. Specifically, when we add an electron in state ¢ to a Fermi
sea (lead), the quasiparticle weight of that state will be renormalized by 0 < z, <1
(see below), i.e. some weight 1—z, to find the electron in the original state ¢ will be
distributed among all the other electrons [6, 8]. This rearrangement of the Fermi
system due to the Coulomb interaction happens very quickly, on a time scale given
by the inverse plasmon frequency. We are now interested in quantifying this renor-
malization. More precisely, when a triplet/singlet electron pair (t and s for short)
is injected from an entangler into two leads 1 and 2, we obtain the state

s 1
[0ile) = —=(al al, £ al, al, o), (12)

V2

with the filled Fermisea |¢), n = (¢, (), ¢ the momentum of an electron, and [ the
lead number. The operator af,,, creates an electron in state n with spin . The prop-
agation of the triplet or singlet, interacting with all other electrons in the Fermi sea,
can be described by the 2-particle Green function G¥5(12,34;t) = <1/)tl/§,t|1/)§,)/;>
If a triplet (singlet) is prepared at ¢ = 0, the probability for retrieving the same
triplet (singlet) after time ¢ is found to be P(t) = |G*/5(12,12;t)|?. Assuming suf-
ficiently separated leads with negligible mutual interaction, we obtain [6, 8] P = z{
for times much smaller than the quasiparticle lifetime (but larger than the inverse
plasma frequency). For a spin-independent Hamiltonian with bare Coulomb inter-
action only and within random phase approximation (RPA) [34], the quasiparticle
weight for a 2DEG is given by [6, 8] zp = 1 — r,(1/24 1/7), in leading order
of the interaction parameter 7, = 1/kpag, where ap = e()i'zz/me2 1s the Bohr
radius and kp the Fermi wave vector. In a typical GaAs 2DEG we have ag =
10.3 nm and r; = 0.614, and thus we obtain zr = 0.665, therefore the probability
for recovering an injected singlet will only be around P =5 0.2. However, for large
electron density (leading to small r;), P will be closer to unity and some useful
amount of entanglement can be preserved. This holds provided the spin-scattering
effects are small, which is supported by experimental results where the electron
spin has been transported phase-coherently over distances of up to 100 um [10].



124 G. Burkard, D. Loss

10. Noise of entangled electrons

A stream of bosons exhibits “bunching” behavior in the correlations be-
tween particles (“noise”) [35, 36]. Recently, the opposite behavior for fermions,
“antibunching”, was expected theoretically [37-39] and found experimentally [40],
in particular for electrons. As pointed out recently [6] the noise of electrons in
current-carrying wires is sensitive only to the symmetry of the orbital part of its
wave function, at least if no spin-scattering processes are present. Thus, if we
now consider a two-electron state, we expect antibunching for the triplet states,
since they have an antisymmetric orbital wave function, whereas the orbital wave
function associated with the spin singlet state is symmetric, and so we expect
bunching. This leads to an observable decrease or increase in noise for electrons,
depending on their common spin state, as we shall discuss next [8].

We assume that an entangler generates pairs of entangled electrons which
are then injected into lead 1 and 2, one electron each, as shown in Fig. 5. A beam
splitter is inserted in order to create two-particle interference effects in the sense
that there is an equal probability amplitude for incoming electrons (from lead 1
or 2) to leave into lead 3 or 4. The quantity of interest is then the noise, i.e. the
current—current correlations, measured in leads 3 and/or 4.

’1 3
Beam splitter

2’

Fig. 5. Setup for measuring noise of entangled electrons. The entangler may take un-
correlated electrons from the Fermi leads 1’ and 2’ (this is not required for the Andreev
entangler). Pairs of entangled electrons (singlet or triplet) are produced in the entangler
and then injected into the leads 1 and 2, one electron per lead. The current of these two
leads are then mixed with a beam splitter (to induce scattering interference) and the
resulting noise is then measured in lead 3 and 4: no noise (antibunching) for triplets,

whereas we obtain enhanced noise (bunching) for singlets.

The probability of recovering a singlet or triplet after injecting it into an
interacting Fermi sea is reduced by a factor of P = z{, which depends on the
carrier density. Except for this renormalization, the entanglement of the singlet or
triplet is not affected by the interacting electrons in the filled Fermisea. If P = 2 is
close to one we can now calculate transport quantities using the standard scattering
theory for non-interacting quasiparticles in a Fermi liquid [37]. We consider the
entangled incident states |+) = |1/)tl/s> with one electron per lead and the quantum
numbers n = (g5, n), where ¢, is the electron energy. Considering a multiterminal
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conductor with density of states v, we assume that the leads consist of only one
quantum channel; the generalization to more channels is straightforward.

For the spectral densities of the fluctuations between the leads a and 3, we
obtain 61, = I, — (I,) in the absence of backscattering and at zero frequency [8],

Sap(@) = limp_ oo (hv/T) [ dteit Re (]8T, ()5 15(0) | %),

2
Saz = Saq = —Sgq = 2;—VT(1 —TY(1F beye,) (13)

Here, the minus (plus) sign refers to the spin triplet (singlet) and 7T is the trans-
mission coefficient of the beam splitter. If two electrons with the same energies,
€1 = £9, in the singlet state are injected into the leads 1 and 2, the shot noise
is enhanced by a factor of two compared to the value for uncorrelated parti-
cles [37,41], 2¢2T(1—T)/hv. This amplification of the noise arises from bunching of
the electrons due to their symmetric orbital wave function, such that the electrons
preferably appear in the same outgoing leads. If the electron pairs are injected
as a triplet, an antibunching effect appears, completely suppressing the noise, i.e.
S(w = 0) = 0. We stress that the sign of cross-correlations does not carry any
signature of statistics, e.g. here the different signs of Ss4 and Ssz = Syq [Eq. (13)]
merely reflect current conservation and absence of backscattering. Since bunching
appears only for a state with a symmetric orbital wave function, which cannot
occur for unentangled states, measuring noise enhancement in the outgoing arms
of the beamsplitter provides unique evidence for entanglement [8]. A crucial re-
quirement is €1 = €3, which can be satisfied for finite-size systems of length L
(including the beam splitter), with discrete spectrum ¢ such that Ae > kpT > ¥
or L < hup/kgT =~ 2 pm at 1 K. Here, v is the level width of ¢ caused by the
coupling to the current reservoirs. Furthermore, inelastic scattering should be neg-
ligible since it can lead to a violation of the condition €1 = €2 by changing the
energy of one of the particles. Therefore one has to work at low temperatures
where finelastic > L.
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