Indication of High-Energy Leptons (e+/e-) Originating from the DD Fusion Reaction at Very Low Energy |
R. Dubeya, K. Czerskia, H. Gokul Dasa, A. Kowalskab, N. Targosz-Sleczkaa, M. Kaczmarskia, M. Valata
aInstitute of Physics, University of Szczecin, 70-451 Szczecin, Poland bInstitute of Mathematics, Physics and Chemistry, Maritime University of Szczecin, 70-500 Szczecin, Poland |
Full Text PDF |
Following the preliminary indications of electron/positron (e+/e-) pair production reported in the deuteron-deuteron reaction, which supported the existence of a single-particle threshold resonance in 4He, a series of experiments have been conducted over the past two years at the eLBRUS Ultra High Vacuum Accelerator Facility at the University of Szczecin, Poland. During certain stages of these experiments, a simple detection system, including silicon (Si) detectors of varying thicknesses and different aluminum (Al) absorption foils placed in front of the detectors, was employed. In addition to Si charged particle detectors, a high-purity germanium detector was used to investigate the effect of internal pair e+/e- creation originating from deuteron-deuteron reactions and to determine the branching ratio between emitted protons, neutrons, and e+/e- pairs at 12 keV deuteron energies. The measured electron energy spectrum and the electron-proton branching ratio agree with Geant4 Monte Carlo simulations and our theoretical expectations for an electron-positron pair creation decay from the deuteron-deuteron 0+ threshold resonance to the ground state. Furthermore, according to theoretical predictions, an increase in the electron-proton branching ratio with decreasing deuteron energies could make the electron channel the most dominant at thermal energies, potentially leading to a future fusion energy source based on high-energy electrons. |
DOI:10.12693/APhysPolA.146.716 topics: fusion, electron, positron, annihilation line, internal pair creations |