Ultrathin Glass for the Photovoltaic Applications
J. Dziedzica and M. Inglot b
aResearch and Development Centre for Photovoltaics, ML System S.A., Zaczernie 190 G, 36-062 Zaczernie, Poland
bDepartment of Physics and Medical Engineering, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Full Text PDF
Chemically strengthened ultrathin glass with a thickness of less than 1 mm has many advantages, such as flexibility, smooth surface, good transmittance, excellent gas and water barrier, much higher toughened in relations to thermally tempered glass, higher impact resistance, increased corrosion resistance and much higher abrasion rate. Chemical strengthening process is a process where an ion exchange occurs by diffusion between the glass panes and the brine solution bath. The deeper penetration of the glass surface by ions contained in the brine bath contributes to the hardness of the glass sheets, which reduces the occurrence of surface defects that cause reflections. From the point of view of photovoltaic applications ultrathin glass significantly reduces the weight of the whole photovoltaic panel structure with respect to known solutions. Furthermore, the reduction of the glass thickness increases the transmission of solar energy in the visible range directly through the glass. In addition, chemical tempered glass has a lower reflectance of light from the surface than the thermally tempered glass. What is more, ultrathin glass is perfect substrate for deposition of nanomaterials, i.e. conductive films or quantum dots. In this work we demonstrate that chemically strengthened ultrathin glass is a perfect material for the photovoltaic applications, i.e. as a substrate for deposition of thin layers and for the design of photovoltaic modules of reduced weight.

DOI: 10.12693/APhysPolA.132.176
PACS numbers: 84.60.Jt, 71.20.Nr, 72.40.+w, 42.70.-a, 85.60.-q