In Situ Electron Beam Amorphization of Sb2Te3 within Single Walled Carbon Nanotubes
S.R. Marks a, K. Morawiec b, P. Dluzewski b, S. Kret b and J. Sloana
aDepartment of Physics and School of Engineering, University of Warwick, Coventry, CV4 7AL UK
bInstitute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, PL-02668 Warsaw, Poland
Full Text PDF
In this study, we reveal the crystallography, crystallinity, and amorphization of low-dimensional crystals of the topological insulator and phase change material Sb2Te3 within both discrete and bundled single walled carbon nanotubes with a diameter range spanning 1.3-1.7 nm by a combination of electron diffraction, aberration-corrected high resolution imaging, and variable dose electron beam irradiation. We further reveal that electron diffraction indicates that the crystallinity of the host single walled carbon nanotubes is largely unaffected by this process indicating that mass loss during the observed in situ glass transition had not occurred and that the template had maintained its structural integrity. Such a transition would not be possible with any other common nanoporous template for which the pores would be enlarged due to likely sintering.

DOI: 10.12693/APhysPolA.131.1324
PACS numbers: 61.82.Rx, 62.23.Hj, 64.70.Nd, 64.70.P-, 61.80.Fe, 61.72.Dd, 61.48.De