Electronic Structure Calculations of InP-Based Coupled Quantum Dot-Quantum Well Structures
J. Andrzejewski
Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Full Text PDF
In this work we investigate the electronic structure of coupled 0D-2D nanostructures. The respective confined state energy levels in a quantum dot-quantum well system are calculated for various conduction band offsets - between the quantum dot and surrounding material. The calculated electron and hole energy levels with their wave functions allow determining if the wave functions are within the injector quantum well or within the quantum dot and if the carrier positions on the energy scale are appropriate from the point of view of a possible laser structure utilizing the so-called tunnel injection scheme. It is shown that for an adequate width of an injector quantum well and the conduction band offsets designing an optimal tunnel injection structure is possible.

DOI: 10.12693/APhysPolA.129.A-97
PACS numbers: 73.21.La, 73.21.Fg, 73.22.Dj, 74.50.+r