Tribological Properties of AISI 316L Steel Surface Layer Implanted with Rare Earth Element
B. Sartowskaa, M. Barlak b, L. Waliś a, W. Starosta a, J. Senatorski c and A. Kosińska b
aInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
bNational Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock/Świerk, Poland
cInstitute of Precision Mechanics, Duchnicka 3, 01-796 Warsaw, Poland
Full Text PDF
Stainless steels with their very good corrosion resistance are used in nuclear, petrochemical, chemical, pulp and paper chemical industries as well as in food processing and others. Unfortunately, poor tribological properties of this kind of steel can be the limitation in the situations in which wear can be responsible for material degradation, like corrosion-erosion. Improvement of the wear resistance of austenitic stainless steels can be achieved using different methods of surface modification, for example: enrichment of the surface layer with reactive elements. Rare earth elements were implanted to AISI 316L austenitic stainless steel using the MEVVA type implanter (65 kV). Different rare earth elements implanted doses: 1015, 5×1015, and 5×1016 ion/cm2 were applied. Initial and modified surfaces were investigated using scanning electron microscopy, elemental analysis with the energy dispersive spectroscopy method, X-ray diffraction analysis and the Rutherford backscattered spectroscopy. Tribological properties were investigated using the Amsler method. The most important result was that the surface layers of AISI 316L steel implanted with rare earth elements showed improvement of tribological properties as compared with the initial material.

DOI: 10.12693/APhysPolA.128.923
PACS numbers: 62.20.Qp, 68.55.Nq, 81.40.Pq