Polycarbonate Polymer Surface Modification by Extreme Ultraviolet (EUV) Radiation
I.U. Ahada,b, B. Budner a, B. Korczyc a, H. Fiedorowicz a, A. Bartnik a, J. Kostecki a, S. BurdyƄska a and D. Brabazon b
aInstitute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warszawa, Poland
bAdvanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Faculty of Engineering & Computing, Dublin City University, Dublin 9, Ireland
Full Text PDF
The degree of the biocompatibility of polycarbonate (PC) polymer used as biomaterial can be controlled by surface modification for various biomedical engineering applications. In the past, PC samples were treated by excimer laser for surface reorganization however associated process alteration of bulk properties is reported. Extreme ultraviolet radiation can be employed in order to avoid bulk material alteration due to its limited penetration. In this study, a 10 Hz laser-plasma EUV source based on a double-stream gas-puff target irradiated with a 3 ns and 0.8 J Nd:YAG laser pulse was used to irradiate PC samples. The PC samples were irradiated with different number of EUV shots. Pristine and EUV treated samples were investigated by scanning electron microscopy and atomic force microscopy for detailed morphological characterization of micropatterns introduced by the EUV irradiation. Associated chemical modifications were investigated by X-ray photoelectron spectroscopy. Pronounced wall-type micro- and nanostructures appeared on the EUV modified surface resulting in a change of surface roughness and wettability.

DOI: 10.12693/APhysPolA.125.924
PACS numbers: 81.05.Lg, 81.40.Wx, 81.16.Rf, 81.65.-b