The Free Volume of Condensed Phases Confined in a Nanopore as Seen by Computer Simulations and Compared to PALS
D. Račko
Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovak Republic
Full Text PDF
In this contribution the free volume of glycerol phase confined in a nanopore in a wide temperature range is computed. The computed free volume is compared to the previously computed values in the glycerol bulk. The mean cavity volumes are also discussed with the experimental measurements by positronium annihilation lifetime spectroscopy. The computer simulations show that in the case of the confined glycerol phase the mean cavity volumes are larger than in the simulated bulk, and also the temperature dependence has a different qualitative behavior; The computed data are in agreement with experimental measurements performed for glycerol in a pore of comparable size with diameter 6 nm. The simulations also indicate that an aspect of filling a pore is important for experimentalists. In the case of a perfectly sealed pore the cavity volume is observed to rise with decreasing temperature.

DOI: 10.12693/APhysPolA.125.785
PACS numbers: 78.70.Bj, 61.20.Ja, 76.60.-k,