Effects of Substrate Temperature on Structural Properties of Tin Oxide Films Produced by Plasma Oxidation after Thermal Evaporation |
M. Alaf, M.O. Guler, D. Gultekin and H. Akbulut
Sakarya University, Dept. of Metallurgical & Materials Engineering, 54187, Sakarya, Turkey |
Full Text PDF |
In this study, tin film was thermally evaporated onto a stainless steel substrate in an argon atmosphere. The tin films were then subjected to a DC plasma oxidation process using an oxygen/argon gas mixture. Three different substrate temperatures (100°C, 150°C, and 200°C) and three different oxygen partial pressures (12.5%, 25%, and 50%) were used to investigate the physical and microstructural properties of the films. The surface properties were studied by scanning electron microscopy, X-ray diffraction, atomic force microscopy and a four-point probe electrical resistivity measurement. The grain size and texture coefficient of the tin oxide films were calculated. Both SnO and SnO2 films with grain sizes of 13-43 nm were produced, depending on the oxygen partial pressure. SnO films have flower- and flake-like nanostructures, and SnO2 films have grape-like structures with nanograins. The resistivity values for the SnO2 phase were found to be as low as 10-5 Ω cm and were observed to decrease with increasing substrate temperature. |
DOI: 10.12693/APhysPolA.123.326 PACS numbers: 64.70.fm, 73.61.At, 81.16.Pr |