The Voigt Profile as a Sum of a Gaussian and a Lorentzian Functions, when the Weight Coefficient Depends on the Widths Ratio and the Independent Variable H.O. Di Roccoa,b and A. Cruzadoc,d aInstituto de Física Arroyo Seco (IFAS), Universidad Nacional del Centro de la Pcia. de Buenos Aires, Pinto 399, 7000 Tandil, Buenos Aires, Argentina bConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ Buenos Aires, Argentina cFacultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina dInstituto de Astrofísica de La Plata (IALP-CONICET), Paseo del Bosque s/n, 1900 La Plata, Buenos Aires, Argentina Received: December 20, 2011; revised version March 6, 2012; in final form May 24, 2012 Full Text PDF Assuming that V(x) ≈ (1 - μ) G1 (x) + μ L1 (x) is a very good approximation of the Voigt function, in this work we analytically find μ from mathematical properties of V(x). G1 (x) and L1 (x) represent a Gaussian and a Lorentzian function, respectively, with the same height and HWHM as V(x), the Voigt function, x being the distance from the function center. In this paper we extend the analysis that we have done in a previous paper, where μ is only a function of a; A being the ratio of the Lorentz width to the Gaussian width. Using one of the differential equation that V(x) satisfies, in the present paper we obtain μ as a function, not only of a, but also of x. Kielkopf first proposed μ (a, x) based on numerical arguments. We find that the Voigt function calculated with the expression μ (a, x) we have obtained in this paper, deviates from the exact value less than μ(a) does, specially for high |x| values. DOI: 10.12693/APhysPolA.122.670PACS numbers: 32.70.-n, 32.70.Jz