Effect of Interstitial Iron Defect and Doping on Physical Properties and Stability of Iron Telluride
R. Viennois
Institut Charles Gerhardt, University Montpellier 2 and CNRS, Pl. E. Bataillon, Montpellier, France, and Condensed Matter Physics Department, University of Geneva, 21 Quai E. Ansermet, Geneva, Switzerland
Full Text PDF
We report on the effect of interstitial iron defect and doping on iron physical properties and stability of iron telluride by combined experimental and theoretical study. We find that antimony doping and increase iron content in interstitial effect have both the effect to slightly decrease the temperature of the magneto-structural transition Ttrans. From stability calculations and absence of change in lattice parameters, it is suggested that insertion of antimony did not occur. Large decrease of Ttrans down to 32 K was observed with Ni doping and our stability calculations confirm that the Ni doping is most favorable in the stability point of view. First-Principles calculations of stability of defect using supercell technique for stoichiometric FeTe indicate that the most stable defect is iron interstitial defect, by far, confirming the proposal done in the literature. Our electronic calculations indicate the appearance of large peaks around the Fermi level in the case of this defect and not just simple doping effect.
DOI: 10.12693/APhysPolA.121.928
PACS numbers: 61.72.-y, 71.55.Ak, 74.70.Xa, 71.20Lp