Hydrothermal Synthesis of Hydroxyapatite on Titanium after Anodic Oxidation
A. Strzałaa, W. Simkab and M. Marszałeka
aThe Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
bFaculty of Chemistry, Silesian University of Technology, Gliwice, Poland
Full Text PDF
Hydrothermal synthesis of hydroxyapatite (HA) is a method which is relatively easy to apply and enables HA precipitation on substrates of various shapes, which is vital to endoprostheses fabrication. Anodic oxidation facilitates HA precipitation, making the coating thicker and more uniform. In this paper the influence of anodic oxidation of titanium substrates on HA precipitation in hydrothermal synthesis is discussed. To determine chemical composition and coating uniformity of anodised and polished Ti substrates the Raman microspectroscopy was employed. The composition was also confirmed using X-ray diffraction method. HA coatings on Ti after anodic oxidation exhibit higher uniformity in comparison to untreated Ti. The X-ray diffraction patterns showed that the HA coating was partly amorphous. Also influence of additional treatment (soaking in NaOH and/or HBSS) after anodic oxidation is discussed in the present paper. It seems that pretreatment may be favourable in some cases, but if the anodic oxidation was conducted in the presence of calcium phosphates the pretreatment seems to prevent the HA precipitation.
DOI: 10.12693/APhysPolA.121.561
PACS numbers: 85.85.+j, 81.20.Ka, 82.80.Gk, 87.64.Bx, 87.85.J-