Active Vibration Control of Rectangular Plate with Distributed Piezoelements Excited Acoustically and Mechanically
M. Kozupa and J. Wiciak
Department of Mechanics and Vibroacoustics, University of Science and Technology - AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
Full Text PDF
The paper presents simulations and research results of testing of the aluminium plate with active vibration control. The aim of this paper is to analyze and compare two ways of excitation of the test plate, various influence on its vibrations and active damping control. Vibration control of the smart structure is realized through four piezoceramic PZT actuators and one PZT sensor bonded to the plate. Simulations and numerical computations of the structure are performed in ANSYS environment. Measurements are executed on specialized sound insulation suite for small elements in reverberation chamber. At the beginning white noise sound source is used in purpose to measure basic vibration modes. After numerical computations and measurements three particular frequencies has been chosen and for them active damping is applied. There are two ways of exciting the test plate; First method is sound wave, second is mechanical vibrations via one of piezoceramics. The test results indicate that PZTs can decrease vibrations by approximately 15 dB for a pure sound input with acoustic excitation method, for mechanical excitation method 18 dB for a sinus vibration signal is achieved.
DOI: 10.12693/APhysPolA.118.95
PACS numbers: 43.40.Dx, 43.50.-x