Comparison between Linear Electromagnetic Accelerators
T. Siaenena and M.J. Löfflerb
a ISL, Saint-Louis, France,
b Gelsenkirchen University of Applied Sciences, Neidenburger Str. 10, D-45897 Gelsenkirchen, Germany
Full Text PDF
For symmetric Taylor tests a 2 m long electromagnetic accelerator will be used to accelerate 100 g rods up to 300 m/s. Only a small variance of the muzzle parameters, velocity and exit time, is tolerable. In order to find the most reliable, simple and efficient accelerator type, an axial coilgun, a flat channel accelerator and an augmented railgun are compared using a lumped parameter model. In particular, the accelerator mutual inductances and their gradients characterize the propulsive forces. The essential advantages of the flat channel geometry over the axial coilgun geometry are shown. The geometric improvements of the flat channel accelerator open the way for the augmented railgun suitable and effective for the planned application. To minimize the variance of the muzzle parameters, modular capacitor banks with semiconductor switches allow the dynamic control of the railgun current, in principle.
DOI: 10.12693/APhysPolA.115.1089
PACS numbers: 85.70.Rp