Mössbauer Study of a Reduction Process in Iron Azaporphyrins

Presented at the Polish Mössbauer Community Meeting, Koninki, Poland, June 8-11, 2008

T. Kaczmarzyk a,, T. Jackowski a, K. Dziliński a and L. Kania b
a Institute of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200 Częstochowa, Poland,
b Institute of Organic Chemistry, Polish Academy of Sciences, M. Kasprzaka 44/52, 01-224 Warsaw, Poland
Full Text PDF
Electronic structure of the Fe(II)- and Fe(I)-complexes of mono- and diazaporphyrins studied by the Mössbauer spectroscopy is considered in this paper. It was found that in the presence of tetrahydrofuran molecules, the electron configuration of Fe(II) ions in the studied complexes corresponds to the intermediate spin state (S = 1) and the complexation of tetrahydrofuran solvent does not change this state. Interaction of tetrahydrofuran solvent with Fe(I)-azaporphyrins does not influence the electronic structure of Fe(I) ions coordinated to the porphyrin ligand, either. Electron configuration of Fe(I) ions in Fe(I)-octaethylporphyrins and Fe(I)-azaporphyrins is the same: (dxy)2(dxz,dyz)4(dz2)1. The aza substitution is reflected in the values of the Mössbauer parameters. Increasing number of nitrogen atoms at meso positions causes the increase in the quadrupole splittings within the range 1.49-2.24 mm/s for the Fe(II) complexes and within the range 1.35-1.85 mm/s for the Fe(I)-porphyrins. Values of the isomer shifts are decreased from 0.51 to 41 mm/s for the same sequence of the Fe(II) complexes. For the Fe(I) reduced forms the isomer shifts are nearly constant and equal to about 0.37 mm/s. The Mössbauer results are discussed in association with EPR data for Fe(I)-porphyrins.
DOI: 10.12693/APhysPolA.115.656
PACS numbers: 33.15.-e