Materials Patterning and Characterisation at the Nanometre Scale Using Focused MeV Ion Beams: Present Achievements and Future Prospects |
G.W. Grime
University of Surrey Ion Beam Centre, Guildford, GU2 7XH, U.K. |
Full Text PDF |
A key phenomenon in the interaction of MeV ions and solids is that the energy transferred from the primary ions to the target electrons is high compared with atomic and molecular binding energies, but low compared with the ion energy. This means that there is a high probability of modifying the chemical properties of the material (for patterning) or of inducing the emission of electromagnetic radiation (for analysis), yet the path of particle is changed by a negligible amount, which means that focused beams remain sharp even after penetrating long depths into the material. Developments in focusing MeV ions in recent years have pushed the useable beam diameters into the sub-micrometre region, which means that nuclear microbeams are poised to make an impact in both direct write fabrication and micro-analysis at length scales of interest in nanotechnology or microbiology. This paper reviews the science and technology underlying the use of nuclear microbeams (ion solid interactions, focusing systems) and reports on the present status and trends of applications in sub-micron scale applications. |
DOI: 10.12693/APhysPolA.115.467 PACS numbers: 81.16.Nd, 41.75.Ak, 41.85.-p |